Extracellular vesicle (EV) cargo is known to change in response to stimuli such as muscle damage. This study aimed to assess particle size, concentration and microRNA (miR) content within small EV-enriched separations prepared from human blood taken before and after unaccustomed eccentric-biased exercise-induced muscle damage. Nine male volunteers underwent plyometric jumping and downhill running, with blood samples taken at baseline, 2, and 24 h post-exercise. EVs were separated using size exclusion chromatography (SEC) and their characteristics evaluated by nanoparticle tracking. No changes in EV size or concentration were seen following the muscle-damaging exercise. Small RNA sequencing identified 240 miRs to be consistently present within the EVs. RT-qPCR analysis was performed: specifically, for known muscle-enriched/important miRs, including miR-1, -206, -133a, -133b, -31, -208b, -451a, -486 and - 499 and the immune-important miR-21, -146a and - 155. Notably, none of the immune-important miRs within the EVs tested changed in response to the muscle damage. Of the muscle-associated miRs tested, only the levels of miR-31-5p were seen to change with decreased levels at 24 h compared to baseline and 2 h, indicating involvement in the damage response. These findings shed light on the dynamic role of EV miRs in response to exercise-induced muscle damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415274PMC
http://dx.doi.org/10.14814/phy2.70056DOI Listing

Publication Analysis

Top Keywords

muscle damage
20
extracellular vesicle
8
size concentration
8
exercise-induced muscle
8
damage
6
muscle
5
mirs
5
analysis plasma-derived
4
plasma-derived small
4
small extracellular
4

Similar Publications

Shoulder and elbow injuries are prevalent among baseball players, particularly pitchers, who experience repetitive eccentric loading of the shoulder, leading to muscle damage and increased injury risk. Nearly 40% of shoulder injuries in baseball occur in pitchers, with many facing low rates of return to sport. The rotator cuff (RC) muscles-supraspinatus (SSP), infraspinatus (ISP), subscapularis (SSC), and teres minor (TMin)-are crucial for shoulder stability, movement, and force generation, particularly in overhead sports.

View Article and Find Full Text PDF

Hypoxia-mediated cardiac tissue injury and its repair or regeneration are one of the major health management challenges globally. Unlike mammals, lower vertebrate species such as zebrafish (Danio rerio) represent a natural model to study cardiac injury, repair and regeneration. Thyroxine (T3) has been hypothesised to be one of the endocrine factors responsible for the evolutionary trade-off for acquiring endothermy and regenerative capability in higher vertebrates.

View Article and Find Full Text PDF

Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.

View Article and Find Full Text PDF

It is well established that host immunity plays a critical role in defending against colorectal cancer (CRC) progression. Connective tissue disease (CTD) encompasses a group of heterogeneous, immune-mediated disorders that present with diverse and often non-specific initial symptoms. Raynaud's phenomenon is a common feature, complicating early diagnosis.

View Article and Find Full Text PDF

Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibres. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!