Oceanic phytoplankton productivity, which regulates atmospheric CO, is crucial for unraveling the complexities of the global carbon cycle. Despite its substantial contribution to the global carbon budget and its critical role in anthropogenic carbon sink, the Southern Ocean (SO) remains under-sampled due to logistical challenges. The present study attempts to elucidate the variability of water column primary production (PP) in the Indian Sector of the Southern Ocean (ISSO) by examining associated physicochemical parameters and physiological conditions of phytoplankton that drive this variability. The study revealed the nutrient limitation in the region north of the Subantarctic Front (SAF) and light limitation coupled with intense zooplankton grazing in the region south of the SAF. Coastal waters exhibit higher PP, characterized by the prevalence of large phytoplankton. The SAF displayed maximum productivity among the fronts, while the Polar Front 2 (PF-2) recorded the lowest. The water column PP varies from 27.01 to 960.69 mg C m d in the frontal region, while the coastal waters recorded productivity up to 1083.56 mg C m d. Phytoplankton in the frontal regions indicated a stable surface abundance, except north of the Subtropical Front (STF), where the oligotrophic condition fosters the growth of picoplankton, subjected to high grazing by microzooplankton. Conversely, in the colder coastal waters, the phytoplankton experienced physiological acclimation. Model-based estimates of PP highlighted the efficacy of the Carbon-based Production Model (CbPM) in estimating net PP (NPP) in these polar waters, surpassing the Vertically Generalized Production Model (VGPM) and Eppley-VGPM. Notably, all model-based PP estimates significantly improved with in situ chlorophyll as input instead of satellite-retrieved chlorophyll. While the models performed well in the coastal water, their performance was suboptimal in the frontal region. This study advances our understanding of the intricate dynamics of phytoplankton productivity in the SO, offering valuable insights for future research endeavors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176401 | DOI Listing |
Sci Rep
December 2024
Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece.
Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.
View Article and Find Full Text PDFJ Environ Manage
December 2024
ICAR-National Bureau of Fish Genetic Resources, Lucknow, PIN- 226002, UP, India.
Floodplain wetlands are biologically rich and productive ecosystems that can capture carbon (C) from the atmosphere through macrophytes and phytoplanktons and hold it in soil for a long time thus playing a critical role in mitigating climate change. The Assam state of India has about 1392 floodplain wetlands engulfing around 100,000 ha area in the Brahmaputra and Barak River basin. In the present study, five different wetlands in the middle Assam viz.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
The presence of antibiotics in the environment is of significant concern due to their adverse effects on aquatic ecosystems. This study provides an assessment of potential ecological risks (RQ) associated with the concentrations of eight antibiotics and antiparasitics (amoxicillin-AMO, azithromycin-AZI, ciprofloxacine-CIP, ofloxacine-OFL, oxfendazole-OXF, lincomycin-LIN, sulfacetamide-SCE and sulfamethoxazole-SME) in the surface water of 13 urban lakes in Hanoi city, Vietnam during the period 2021-2023. The findings revealed considerable variations in the total concentrations of these 8 substances (T), ranging from below the method detection limit (< MDL) to 2240 ng L with an average of 330.
View Article and Find Full Text PDFMar Drugs
December 2024
School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China.
The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue a rational DHA/EPA ratio. In this study, synthetic biological strategy was applied to improve EPA production in .
View Article and Find Full Text PDFMar Drugs
December 2024
National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea.
is well known for its potential for biofuel production due to its high lipid content. Numerous omics and biochemical studies have explored the overall molecular mechanisms underlying the responses of sp. to nutrient availability, primarily focusing on lipid metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!