Epilepsy affects millions of people worldwide, about one-third patients with epilepsy exhibits resistance to available antiseizures medications, known as drug-resistant epilepsy (DRE). Mitochondrial dysfunction has been implicated as a hallmark in drug-resistant epilepsy via activation of microglial kynurenine 3-monooxygenase (KMO) and cyclooxygenase (COX) enzymes, leading to neuroinflammation and oxidative stress. Diclofenac, an equipotent non selective cyclooxygenase inhibitor, has inhibitory action on KMO enzyme and has also shown anti-inflammatory and antioxidant properties in animal models of epilepsy. These properties make it a suitable candidate for amelioration of DRE. However, its potential in drug-resistant epilepsy remained unexplored till date. In this study, dose dependent effect of diclofenac (5 mg/kg, 10 mg/kg, 20 mg/kg) has been explored in rotenone corneal kindling model of mitochondrial DRE. The results of our study revealed the induction of drug resistance to antiseizure medications and induced kynurenine 3-monooxygenase activity in rotenone corneal kindled epileptic mice in comparison to naive mice. Treatment of rotenone corneal kindled epileptic mice with diclofenac resulted in a significant decrease in drug resistance to antiseizure medications as evident by a reduction in seizure score in the treatment groups as compared to control group, in post-treatment resistance validation. The kynurenine 3-monooxygenase inhibitory activity (as evidenced by decreased levels of neurotoxic quinolinic acid) and the antioxidant effect (as evident by significantly reduced oxidative stress) in the diclofenac treated groups, emerged as a major contributor for its ameliorative action. Findings of this study suggests, diclofenac can be used as an adjunct therapy in amelioration of drug-resistant epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2024.149246 | DOI Listing |
Clozapine is effective in treatment-resistant schizophrenia. However, clozapine has its own (well-) known side effects. We describe a case of a patient who developed epileptic seizures after starting clozapine.
View Article and Find Full Text PDFBrain
January 2025
Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA.
Brain stimulation has, for many decades, been considered as a potential solution for the unmet needs of the many people living with drug-resistant epilepsy. Clinically, there are several different approaches in use, including vagus nerve stimulation (VNS), deep brain stimulation of the thalamus, and responsive neurostimulation (RNS). Across populations of patients, all deliver reductions in seizure load and SUDEP risk, yet do so variably, and the improvements seem incremental rather than transformative.
View Article and Find Full Text PDFRadiographics
January 2025
From the Department of Radiology, University of Cincinnati Medical Center, 3188 Bellevue Ave, Cincinnati, OH 45219 (A.S., A.T.T., B.W.M., L.L.W., J.L.S.); and Department of Radiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH (A.T.T.).
Approximately one-third of patients with focal epilepsy have medically refractory focal epilepsy (MRFE), which significantly impacts their quality of life. Once a seizure focus is identified and determined to be in the noneloquent cortex, it can be surgically resected with the goal of freedom from seizures and minimal neurocognitive deficit. During noninvasive (phase I) presurgical planning, functional (nuclear) imaging and structural imaging are complementary in the accurate localization of the epileptogenic zone (EZ).
View Article and Find Full Text PDFInt J Neurosci
January 2025
Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
Purpose: To investigate the activity of default mode network (DMN), frontoparietal network (FPN) and cerebellar network (CN) in drug-resistant epilepsy (DRE) patients undergoing vagus nerve stimulation (VNS).
Methods: Fifteen patients were recruited and underwent resting-state fMRI scans. Independent component analysis and paired sample t-tests were used to examine activity changes of DMN, FPN and CN before and after VNS.
Front Neurol
December 2024
Department of Diagnostic Radiology, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
Objective: This investigation aimed to elucidate alterations in metabolic brain network connectivity in drug-resistant mesial temporal lobe epilepsy (DR-MTLE) patients, relating these changes to varying surgical outcomes.
Methods: A retrospective cohort of 87 DR-MTLE patients who underwent selective amygdalohippocampectomy was analyzed. Patients were categorized based on Engel surgical outcome classification into seizure-free (SF) or non-seizure-free (NSF) groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!