Chemical aging of biochar-zero-valent iron composites in groundwater: Impact on Cd(II) and Cr(VI) co-removal.

Environ Res

Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China. Electronic address:

Published: December 2024

Biochar (BC), zero-valent iron (ZVI), and their composites are promising materials for use in permeable reactive barriers, although further research is needed to understand how their properties change during long-term aging in groundwater. In this study, BC, ZVI and their composites (4BC-1ZVI) were subjected to the chemical aging tests in five media (deionized water, NaCl, NaHCO, CaCl and a mixture of CaCl and NaHCO solutions) for 20 days. After treatment, the microscopic analysis and performance tests for the co-removal of Cd(II) and Cr(VI) were carried out. The results indicated that the removal of Cd(II) by aged 4BC-1ZVI followed a pseudo-second-order model, whereas the removal of Cr(VI) was better fitted with a pseudo-first order model. The aging mechanism of 4BC-1ZVI was primarily governed by iron corrosion/passivation, the reduction of soluble components, and the formation of carbonate minerals. Less FeO/ γ-FeO was formed during aging in deionized water, NaCl and CaCl solutions. The corrosion products, FeO/ γ-FeO, FeCO and α/γ-FeOOH, were observed after aging in NaHCO and a mixture of NaHCO and CaCl solutions. The decrease in the soluble components of biochar led to a decrease in cation exchange, while carbonate minerals contributed to Cd(II) precipitation. This work provides insights into the aging processes of BC-ZVI composites for long-term groundwater remediation applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120022DOI Listing

Publication Analysis

Top Keywords

chemical aging
8
cdii crvi
8
zvi composites
8
deionized water
8
water nacl
8
nahco cacl
8
soluble components
8
carbonate minerals
8
feo/ γ-feo
8
cacl solutions
8

Similar Publications

The influence of high-intensity electric fields on the stability of polymeric materials is a problem of interest in the design of next-generation energy storage and electronic devices, and for understanding the limits of stability of polymer films exposed to large electric fields generally. Here, we show that the dielectric strength of entangled glassy polymer films increases as an inverse power-law of the film thickness for "ultrathin" films below a micron in thickness. The dielectric strength enhancement in these polymer films becomes as large as ≈2 GV/m in films thinner than 100 nm, but in this thickness regime, the increase of the dielectric strength depends strongly on the polymer mass, sample aging time, and the method of film preparation.

View Article and Find Full Text PDF

This paper reports on several mechanisms of carbon aging in a hybrid lithium-ion capacitor operating with 1 mol L LiPF in an ethylene carbonate/dimethyl carbonate 1:1 vol/vol electrolyte. Carbon electrodes were subjected to a constant polarization protocol (i.e.

View Article and Find Full Text PDF

Alzheimer's disease is the primary cause of dementia and imposes a significant socioeconomic burden globally. Physical exercise, as an effective strategy for improving general health, has been largely reported for its effectiveness in slowing neurodegeneration and increasing brain functional plasticity, particularly in aging brains. However, the underlying mechanisms of exercise in cognitive aging remain largely unclear.

View Article and Find Full Text PDF

Risk of increasing soil nitrous oxide emissions by chemical oxidation modification on biochar.

J Environ Manage

January 2025

Department of Plant and Environmental Sciences, University of Copenhagen, DK, Frederiksberg C, 1871, Copenhagen, Denmark. Electronic address:

Biochar is widely recognized as a soil amendment capable of mitigating soil nitrous oxide (NO) emissions. However, the effects of biochar modification, particularly through chemical oxidation, remain relatively unexplored. This study modified wood and corn straw biochars using HO and acid (HSO/HNO).

View Article and Find Full Text PDF

Selective catalytic reduction of NO by NH(NH-SCR) remains challenging for diesel vehicles due to the complex exhaust condition. Cu-SAPO-18 zeolite has emerged as an efficient catalyst for the NH-SCR process, attributed to its unique small pore configuration and high NH-SCR activity. Herein, Zr-modified Cu-SAPO-18 has been fabricated and evaluated for the reduction of NO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!