A worldwide hazard to human health is posed by the growth of pathogenic bacteria that have contaminated fresh, processed, cereal, and seed products in storage facilities. As the number of multidrug-resistant (MDR) pathogenic microorganisms rises, we must find safe, and effective antimicrobials. The use of green synthesis of nanoparticles to combat microbial pathogens has gained a rising interest. The current study showed that Aspergillus fumigatus was applied as a promising biomass for the green synthesis of biogenic silver nanoparticles (Ag NPs). The UV-visible spectra of biosynthesized Ag NPs appeared characteristic surface plasmon absorption at 475 nm, round-shaped with sizes ranging from 17.11 to 75.54 nm and an average size of 50.37 ± 2.3 nm. In vitro tests were conducted to evaluate the antibacterial, antioxidant, and anticancer effects of various treatment procedures for Ag NP applications. The synthesized Ag NPs was revealed antimicrobial activity against Aspergillus flauvas, A. niger, Bacillus cereus, Candida albicans, Esherichia coli, Pseudomonas aerugonosa, and Staphylococcus aureus under optimum conditions. The tested bacteria were sensitive to low Ag NPs concentrations (5, 10, 11, 8, 7, 10, and 7 mg/mL) which was observed for the mentioned-before tested microorganisms, respectively. The tested bacterial pathogens experienced their biofilm formation effectively suppressed by Ag NPs at sub-inhibitory doses. Antibacterial reaction mechanism of Ag NPs were tested using scanning electron microscopy (SEM) to verify their antibacterial efficacy towards S. aureus and P. aeruginosa. These findings clearly show how harmful Ag NPs are to pathogenic bacteria. The synthesized Ag NPs showed antitumor activity with IC at 5 μg/mL against human HepG-2 and MCF-7 cellular carcinoma cells, while 50 mg/mL was required to induce 70 % of normal Vero cell mortality. These findings imply that green synthetic Ag NPs can be used on cancer cell lines in vitro for anticancer effect beside their potential as a lethal factor against some tested pathogenic microbes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2024.106950DOI Listing

Publication Analysis

Top Keywords

nps
9
biogenic silver
8
pathogenic bacteria
8
green synthesis
8
synthesized nps
8
tested
5
aspergillus fumigatus-induced
4
fumigatus-induced biogenic
4
silver nanoparticles'
4
nanoparticles' efficacy
4

Similar Publications

Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol-gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed visible changes in the morphology and microstructure resulting from the incorporation of nitrogen into the ZnO lattice.

View Article and Find Full Text PDF

The low stability of water-in-oil-in-water (W/O/W) double emulsions greatly limits their applications. Therefore, in this study, W/O/W Pickering double emulsions (PDEs) were prepared by a two-step emulsification method using polyglycerol polyricinoleate (PGPR) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs) as lipophilic and hydrophilic emulsifiers, respectively. The regulation mechanism of the performance of PDEs by XG/Ly NPs was investigated, and the ability of the system to co-encapsulate epigallocatechin gallate (EGCG) and β-carotene was evaluated.

View Article and Find Full Text PDF

Novel therapeutic delivery systems and delivery methods to the inner ear are necessary to treat hearing loss and inner ear disorders. However, numerous barriers exist to therapeutic delivery into the bone-encased and immune-privileged environment of the inner ear and cochlea, which makes treating inner ear disorders challenging. Nanoparticles (NPs) are a type of therapeutic delivery system that can be engineered for multiple purposes, and posterior semicircular canal (PSCC) infusion is a method to directly deposit them into the cochlea.

View Article and Find Full Text PDF

Hierarchical 3D FeCoNi Alloy/CNT @ Carbon Nanofiber Sponges as High-Performance Microwave Absorbers with Infrared Camouflage.

Materials (Basel)

December 2024

Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.

Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges.

View Article and Find Full Text PDF

Fine-Tuning the Physicochemical Properties of Poly(lactic Acid) Nanoparticles for the Controlled Release of the BET Inhibitor JQ1: Influence of PVA Concentration.

Polymers (Basel)

January 2025

Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Unidad nanoDrug, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, 02071 Albacete, Albacete, Spain.

The compounds targeting the bromo and extra terminal domain proteins (BET), such as the JQ1, present potent anti-cancer activity in preclinical models, however, the application of JQ1 at the clinical level is limited by its short half-life, rapid clearance, and non-selective inhibition of BET family proteins, leading to off-target effects and resistance. To address these challenges, the optimization of JQ1 delivery has been accomplished through polylactide (PLA) nanoparticles. PLA derivatives with varying molecular weights were synthesized via ring-opening polymerization using a zinc-based initiator and characterized using thermogravimetric analysis, differential scanning calorimetry, and infrared spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!