Neuroinflammation has recently emerged as a key event in Parkinson's disease (PD) pathophysiology and as a potential target for disease-modifying therapies. Plant-derived extracts, rich in bioactive phytochemicals with antioxidant properties, have shown potential in this regard. Yet their clinical utility is hampered by poor systemic availability and rapid metabolism. Recently, our group demonstrated that intragastric delivery of Nasco pomace extract via nutriosomes (NN), a novel nanoliposome formulation, contrasts the degeneration of nigrostriatal dopaminergic neurons in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In the present study, we investigated the impact of intragastric NN treatment on the reactivity of glial cells in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu) of MPTP-treated mice. To this scope, in mice exposed to MPTP (20 mg/kg/day, × 4 days), we conducted immunohistochemistry analyses of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA1) to assess the responsiveness of astrocytes and microglial cells, respectively. Additionally, we studied the co-localization of the pro-inflammatory interleukin (IL)-1β and tumor necrosis factor (TNF)-α with IBA1 to obtain insights into microglial phenotype. Immunohistochemical results showed that NN administration significantly mitigated astrogliosis and microgliosis in the CPu and SNc of mice receiving subacute MPTP treatment, with region-specific variations in anti-inflammatory efficacy. Remarkably, the CPu showed a heightened response to NN treatment, including a pronounced decrease in microglial IL-1β and TNF-α production. Altogether, these findings underscore the anti-inflammatory effects of NN treatment and provide a potential mechanism underlying the neuroprotective effects previously observed in a subacute MPTP mouse model of PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2024.114958 | DOI Listing |
NPJ Parkinsons Dis
January 2025
Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy.
Metabotropic glutamate (mGlu) receptors are candidate drug targets for therapeutic intervention in Parkinson's disease (PD). Here we focused on mGlu3, a receptor subtype involved in synaptic regulation and neuroinflammation. mGlu3 mice showed an enhanced nigro-striatal damage and microglial activation in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
View Article and Find Full Text PDFJ Neurophysiol
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
Parkinson's disease (PD) is a prevalent and challenging neurodegenerative disorder, and may involve impaired autophagy. Nuclear factor erythroid-2-related factor 2 (Nrf2) is crucial for regulating autophagy-related genes, maintaining cellular homeostasis. Electroacupuncture (EA), a complementary and alternative therapy for PD, has gained widespread clinical application.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
Parkinsons Dis
December 2024
School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
Cinnamaldehyde (CA), the primary bioactive compound in cinnamon ( Presl, Lauraceae, ), holds potential therapeutic benefits for Parkinson's disease (PD). To scrutinize the impact and mechanisms of CA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, male C57BL/6 mice were randomly allocated to CA (150, 300, and 600 mg/kg), model, Madopar, and control group ( = 12). The Open Field, Pole-jump, and Rotarod experiments assessed exercise capacity and anxiety levels.
View Article and Find Full Text PDFIUBMB Life
January 2025
Cheerland Watson Precision Medicine Ltd, Shenzhen, China.
Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!