Following ischemic stroke astrocytes undergo rapid molecular and functional changes that may accentuate tissue damage. In this study we identified the neurotrophin receptor TrkB in astrocytes as a key promoter of acute CNS injury in ischemic stroke. In fact, TrkB protein was strongly upregulated in astrocytes after human and experimental stroke, and transgenic mice lacking astrocyte TrkB displayed significantly smaller lesion volume, lower brain atrophy and better motor performance than control animals after transient middle cerebral artery occlusion. Neuropathological studies evidenced that edema directly correlated with astrogliosis and was limited in transgenic mice. Importantly, adaptive levels of the water channel AQP4 was astrocyte TrkB-dependent as AQP4 upregulation after stroke did not occur in mice lacking astrocyte TrkB. In vitro experiments with wild-type and/or TrkB-deficient astrocytes highlighted TrkB-dependent upregulation of AQP4 via activation of HIF1-alpha under hypoxia. Collectively, our observations indicate that TrkB signaling in astrocytes contributes to the development of edema and worsens cerebral ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2024.106670 | DOI Listing |
Cytotechnology
February 2025
Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India.
Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.
View Article and Find Full Text PDFCell Commun Signal
November 2024
Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
Neuropharmacology
January 2025
Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland. Electronic address:
The most aggressive tumors of human central nervous system are anaplastic astrocytoma (AA, III grade) and glioblastoma multiforme (GBM, IV grade) with an extremely bad prognosis. Their malignant character and resistance to standard therapy are correlated to the over-expression of survival pathways such as Ras/Raf/MEK/ERK and PLCγ1/PKC regulated by TrkB receptor. Therefore, the aim of this study was to investigate the engagement of those pathways in human glioma cells resistance for apoptosis induction by Temozolomide treatment.
View Article and Find Full Text PDFNeurol Res
December 2024
Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Introduction: Astrocytes, specialized glial cells, are essential for maintaining the central nervous system homeostasis. Inflammatory conditions can disrupt neurotrophic factors and receptor expression in astrocytes, leading to potential central nervous system damage. Itaconate, recently identified for its anti-inflammatory properties, was investigated in this study for its effects on neurotrophic factors in LPS-stimulated primary rat astrocytes.
View Article and Find Full Text PDFPerisynaptic astrocyte processes (PAPs) contact pre- and post-synaptic elements to provide structural and functional support to synapses. Accumulating research demonstrates that the cradling of synapses by PAPs is critical for synapse formation, stabilization, and plasticity. The specific signaling pathways that govern these astrocyte-synapse interactions, however, remain to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!