Comparison of the presence of high production volume chemicals in farmed and wild fish highly consumed in catalonia and their risk assessment.

Chemosphere

Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Building N4, 43007, Tarragona, Catalonia, Spain.

Published: October 2024

The decline in fish populations and the depletion of marine resources have sparked concerns about sustainable fish production, driving the innovation of new aquaculture methods. While some argue that wild fish are healthier than farmed fish due to less exposure to contaminants and pathogens, wild fish can accumulate contaminants from more contaminated water sources. The slower growth of wild fish and their longer exposure to the environment may contribute to higher pollutant levels in fish tissues. In this study, we focus on 25 contaminants considered as high production volume chemicals (HPVCs), such as organophosphate esters (OPEs), benzothiazoles (BTs), benzosulfonamides (BSAs) and phthalates (PAEs). The compounds were extracted from the edible part of the fish using the QuEChERS method and analysed by gas chromatography-tandem mass spectrometry. A total of 74 samples were analysed from three of the most commonly consumed species in Catalonia, Spain (turbot, sea bass and sea bream). Two samples of each species were collected each month, one form farmed and one from wild origin. In general, the compounds were found in all the samples in a wide concentrations range, although no significant differences were observed between the mean concentration of wild and farmed samples. Although similar mean concentrations for the OPEs, BTs and BSAs were found between farmed and wild origin samples, PAEs were more frequently detected in farmed samples. Di-n-octyl phthalate and diethyl phthalate showed the highest concentrations in all fish samples, with values up to 19505 and 17605 ng g (d.w.), in sea bass and sea bream, respectively. Di-(2-ethylexyl)-adipate proved to be the most relevant carcinogenic compound, with no associated health risk. Despite the detection of the studied HPVCs, no health risk was associated with the consumption of these three fish species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143364DOI Listing

Publication Analysis

Top Keywords

wild fish
16
farmed wild
12
fish
11
high production
8
production volume
8
volume chemicals
8
sea bass
8
bass sea
8
sea bream
8
wild origin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!