An amygdalar oscillator coordinates cellular and behavioral rhythms.

Neuron

Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address:

Published: November 2024

Circadian rhythms are generated by the master pacemaker suprachiasmatic nucleus (SCN) in concert with local clocks throughout the body. Although many brain regions exhibit cycling clock gene expression, the identity of a discrete extra-SCN brain oscillator that produces rhythmic behavior has remained elusive. Here, we show that an extra-SCN oscillator in the lateral amygdala (LA) is defined by expression of the clock-output molecule mWAKE/ANKFN1. mWAKE is enriched in the anterior/dorsal LA (adLA), and, strikingly, selective disruption of clock function or excitatory signaling in adLA neurons abolishes Period2 (PER2) rhythms throughout the LA. mWAKE levels rise at night and promote rhythmic excitability of adLA neurons by upregulating Ca-activated K channel activity specifically at night. adLA neurons coordinate rhythmic sensory perception and anxiety in a clock-dependent and WAKE-dependent manner. Together, these data reveal the cellular identity of an extra-SCN brain oscillator and suggest a multi-level hierarchical system organizing molecular and behavioral rhythms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581920PMC
http://dx.doi.org/10.1016/j.neuron.2024.08.013DOI Listing

Publication Analysis

Top Keywords

adla neurons
12
behavioral rhythms
8
extra-scn brain
8
brain oscillator
8
amygdalar oscillator
4
oscillator coordinates
4
coordinates cellular
4
cellular behavioral
4
rhythms
4
rhythms circadian
4

Similar Publications

An amygdalar oscillator coordinates cellular and behavioral rhythms.

Neuron

November 2024

Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address:

Circadian rhythms are generated by the master pacemaker suprachiasmatic nucleus (SCN) in concert with local clocks throughout the body. Although many brain regions exhibit cycling clock gene expression, the identity of a discrete extra-SCN brain oscillator that produces rhythmic behavior has remained elusive. Here, we show that an extra-SCN oscillator in the lateral amygdala (LA) is defined by expression of the clock-output molecule mWAKE/ANKFN1.

View Article and Find Full Text PDF

Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.

View Article and Find Full Text PDF

5β-reduced neuroactive steroids as modulators of growth and viability of postnatal neurons and glia.

J Steroid Biochem Mol Biol

May 2024

Dept. of Neurosteroids, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague 6, Czech Republic. Electronic address:

Endogenous neurosteroids (NS) and their synthetic analogs, neuroactive steroids (NAS), are potentially useful drug-like compounds affecting the pathophysiology of miscellaneous central nervous system disorders (e.g. Alzheimer´s disease, epilepsy, depression, etc.

View Article and Find Full Text PDF

A broad variety of central nervous system diseases have been associated with glutamate induced excitotoxicity under pathological conditions. The neuroprotective effects of neurosteroids can combat this excitotoxicity. Herein, we have demonstrated the neuroprotective effect of novel steroidal N-methyl-D-aspartate receptor inhibitors against glutamate- or NMDA- induced excitotoxicity.

View Article and Find Full Text PDF

Herein, we report the synthesis, structure-activity relationship study, and biological evaluation of neurosteroid inhibitors of -methyl-D-aspartate receptors (NMDARs) receptors that employ an amide structural motif, relative to pregnanolone glutamate (PAG) - a compound with neuroprotective properties. All compounds were found to be more potent NMDAR inhibitors (IC values varying from 1.4 to 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!