AI Article Synopsis

  • This study talks about a new way to clean dirty water and produce energy using sunlight with something called photocatalytic fuel cells (PFCs).
  • They made a special material using SnS nanoplate and carbon felt that works really well for cleaning tough wastewater with uranium and other chemicals.
  • Under bright sunlight, their new method cleaned over 92% of the uranium and 98% of a type of medicine called tetracycline, making it super effective at removing harmful stuff from water!

Article Abstract

Resourceful treatment of wastewater is a promising way to facilitate sustainable development. Recently, photocatalytic fuel cells (PFCs) have attracted widespread attention as the method that can synchronously achieve wastewater treatment and clean energy production only depend on light. However, few PFCs focused on treating complex uranium (U(VI))-organic wastewater. This study prepared a SnS nanoplate decorated carbon felt (SnS/CF) material by facile hydrothermal method and used as the cathode to construct a hybrid tandem photocatalytic fuel cell (HTPFC) system. Compared to the CF-HTPFC, the removal efficiencies of U(VI) and tetracycline hydrochloride (TCH) increased to 3.4 and 1.8 times in the SnS/CF-HTPFC system, accompanied with the reaction rate (k) values increased to 30.39 and 3.78 times, respectively. More importantly, under real sunlight irradiation (From 10:00 to 16:00), the removal efficiencies of U(VI) and TCH respectively reached 92.49 % and 97.96 %, and the P reached 6.49 mW·cm. HTPFC also displayed satisfactory performances in treating radioactive wastewater containing different organic compounds, with the removal efficiencies of U(VI) and organic compounds both exceeded 93.35 %. The loading of SnS nanoplates enhanced electrochemical performance and introduced abundant S active sites, allowing more U(VI) to be adsorbed and reduced, and simultaneously promoting the removal of organic matter by improving the charge separation efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135861DOI Listing

Publication Analysis

Top Keywords

photocatalytic fuel
12
removal efficiencies
12
efficiencies uvi
12
resourceful treatment
8
hybrid tandem
8
tandem photocatalytic
8
fuel cell
8
sns nanoplate
8
carbon felt
8
organic compounds
8

Similar Publications

Scandium-III-nitrides: A New Material Platform for Semiconductor Photocatalysts with High Reducing Power.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada.

Semiconductor nanowires have become emerging photocatalysts in artificial photosynthesis processes for solar fuel production. For reduction reactions, semiconductor photocatalysts with high reducing powers are highly desirable, especially for chemicals that are extremely difficult to reduce. This study introduces a new semiconductor photocatalyst, scandium (Sc)-III-nitrides, which have higher reducing powers than all conventional semiconductor photocatalysts.

View Article and Find Full Text PDF

In the face of escalating environmental challenges such as fossil fuel dependence and water pollution, innovative solutions are essential for sustainable development. In this regard, zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8, act as promising photocatalysts for environmental remediation and renewable energy applications. ZIF-8, a subclass of metal-organic frameworks (MOFs), is renowned for its large specific surface area, high porosity, rapid electron transfer ability, abundant functionalities, ease of designing, controllable properties, and remarkable chemical and thermal stability.

View Article and Find Full Text PDF

In light of the increasingly pressing energy and environmental challenges, the use of photocatalysis to convert solar energy into chemical energy has emerged as a promising solution. Halide perovskites have recently attracted considerable interest as photocatalysts due to their outstanding properties. Early developments focused on Lead-based perovskites, but their use has been severely restricted due to the toxicity of Lead.

View Article and Find Full Text PDF

Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.

View Article and Find Full Text PDF

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!