The fruitbodies or sporocarps formed by mushrooms can accumulate mineral elements, such as selenium, zinc or copper, making them an important source of micronutrients essential to humans. However, the literature about environmental factors affecting mineral composition in mushrooms is scarce and limited to the ambiguous impact of soil properties and region. In our study, we investigated the effects of tree stand characteristics (tree species and tree canopy cover), understory cover, and soil properties (pH and C/N ratio of the soil) on the concentration of minerals in six edible mushroom species: Laccaria laccata, L. proxima, L. amethystina, Lepista nuda, Lycoperdon perlatum, and Calvatia excipuliformis, collected on 20 plots covered by stands of different tree species composition and varying in the understory cover. We estimated the concentration of eight elements (Zn, Se, Mg, Mn, Cu, Co, Cr, Mo) using the ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) technique and compared their concentration between the plots, using ordination and linear regression methods. Our research revealed that mushroom species identity, including its ecological role and phylogenetic affinity, had the greatest effect on the mineral composition of mushrooms. The effect of environmental factors depended also on the micronutrient identity. Some elements were not affected at all (Co, Cr), some only by soil reaction or C/N ratio (Mn, Mg, Cu), while others were influenced by both tree stand characteristics and soil properties (Se, Zn, Mo). This knowledge enables us to maximize the content of minerals in harvested mushrooms by collecting them in specific areas. For example, mushrooms, which are sources of Se and Zn, can be gathered in coniferous forests characterized by acid soils, low canopy cover, and minimal understory cover. This targeted collection approach can effectively increase the mineral content in harvested mushrooms, thereby enhancing their health benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2024.127534DOI Listing

Publication Analysis

Top Keywords

c/n ratio
12
stand characteristics
12
soil properties
12
understory cover
12
environmental factors
8
mineral composition
8
composition mushrooms
8
tree stand
8
tree species
8
canopy cover
8

Similar Publications

(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.

View Article and Find Full Text PDF

Fuel accumulation shapes post-fire fuel decomposition through soil heating effects on plants, fungi, and soil chemistry.

Sci Total Environ

January 2025

University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA; University of Kansas, Ecology & Evolutionary Biology, 1200 Sunnyside Avenue Haworth Hall, Lawrence, KS 66045, USA.

Forty percent of terrestrial ecosystems require recurrent fires driven by feedbacks between fire and plant fuels. The accumulation of fine fuels in these ecosystems play a key role in fire intensity, which alters soil nutrients and shapes soil microbial and plant community responses to fire. Changes to post-fire plant fuel production are well known to feed back to future fires, but post-fire decomposition of new fuels is poorly understood.

View Article and Find Full Text PDF

Cellobiose lipids (CBLs) are a class of glycolipid biosurfactants produced by various fungal strains. These compounds have gained significant interest due to their surface-active and antifungal properties, which are comparable to traditional synthetic surfactants and antimicrobials. Despite their potential applicability in various cosmetic, pharmaceutical, and agricultural formulations, significantly less research has been focused on their production and purification in comparison to other glycolipid biosurfactants, such as mannosylerythritol lipids (MELs) and sophorolipids.

View Article and Find Full Text PDF

The reaction between 1,3-bis(3,5-dimethylpyrazolylmethyl)hexahydropyrimidine L and Mo(CO) in CHCN at 130 °C afforded a binuclear Mo(0) complex 1 containing a new macrocycle formed upon C-N bond cleavage in L in good yield. Conversely, a clean reaction takes place between L and [Mo(CO)(COD)] in THF at 60 °C to give a new metalloligand complex [Mo(CO)(κ-,-L)] 2 containing a spectator pyrazole arm in 83% yield. Their structures were determined by X-ray diffraction methods, and a plausible mechanism is proposed for the C-N bond cleavage leading to complex 1.

View Article and Find Full Text PDF

Background: Food insecurity is associated with high morbidity and mortality and is typically measured with the 10-item US Adult Food Security Survey Module. Shorter instruments may capture similar information, but this has not been validated against mortality in general populations.

Methods: A nationally representative sample of individuals aged 20 to 74 years from the US National Health Interview Survey 2011 to 2018 was included, with deaths linked to the National Death Index through 2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!