Objectives: Alzheimer's disease (AD) is a common neurodegenerative disorder that primarily affects older individuals. Due to its high incidence, an accurate and efficient stratification system could greatly aid in the clinical diagnosis and prognosis of AD patients. Convolutional neural networks (CNN) approaches have demonstrated exceptional performance in the automated stratification of AD, mild cognitive impairment (MCI) and cognitively normal (CN) participants using MRI, owing to their high predictive accuracy and reliability. Therefore, we aimed to develop an algorithm based on CNN and radiomic features derived from ROIs of bilateral hippocampus and amygdala in brain MRI for stratification between AD, MCI and CN.
Methods: In this study, we proposed a CNN and radiomic features-based algorithm using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. T1-weighted images were used. We utilized three datasets, including AD (199 cases, 602 images), MCI (200 cases, 948 images), and CN (200 cases, 853 images), to perform binary classification (AD vs. CN, AD vs. MCI, and MCI vs. CN). Finally, we obtained the accuracy (ACC) and the area under the curve of the receiver operating characteristic curve (AUC) to evaluate the performance of the algorithm.
Results: Our proposed algorithm achieved acceptable overall discrimination accuracy. In the term of AD vs CN, radiomic-based algorithm alone obtained ACC of 82.6 % and AUC of 88.8, CNN-based algorithm obtained ACC of 80 % and AUC of 87.2 and their fusion showed ACC of 84.4 % and AUC of 90. In the term of MCI vs CN, radiomic-based algorithm alone obtained ACC of 71.6 % and AUC of 77.8, CNN-based algorithm obtained ACC of 69 % and AUC of 75 and their fusion showed ACC of 72.7 % and AUC of 80. In the term of AD vs MCI, radiomic-based algorithm alone obtained ACC of 57 % and AUC of 57.5, CNN-based algorithm obtained ACC of 56.6 % and AUC of 57.7 and their fusion showed ACC of 58 % and AUC of 59.5.
Conclusion: In conclusion, it has been determined that hippocampus and amygdala-based stratification using CNN features and radiomic features-based algorithm is a promising method for the classification of AD, MCI, and CN participants.
Advances In Knowledge: This study proposed an automated procedures based on MRI-derived radiomic features and CNN for classification between AD, MCI and CN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinimag.2024.110301 | DOI Listing |
Sci Rep
January 2025
School of Information Engineering, Shandong Huayu University of Technology, Dezhou, 253000, China.
In order to reduce the number of parameters in the Chinese herbal medicine recognition model while maintaining accuracy, this paper takes 20 classes of Chinese herbs as the research object and proposes a recognition network based on knowledge distillation and cross-attention - ShuffleCANet (ShuffleNet and Cross-Attention). Firstly, transfer learning was used for experiments on 20 classic networks, and DenseNet and RegNet were selected as dual teacher models. Then, considering the parameter count and recognition accuracy, ShuffleNet was determined as the student model, and a new cross-attention mechanism was proposed.
View Article and Find Full Text PDFMethods
January 2025
Department of Physiology, Ajou University School of Medicine, Suwon 16499 Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499 Republic of Korea. Electronic address:
Pancreatic α-amylase breaks down starch into isomaltose and maltose, which are further hydrolyzed by α-glucosidase in the intestine into monosaccharides, rapidly raising blood sugar levels and contributing to type 2 diabetes mellitus (T2DM). Synthetic inhibitors of carbohydrate-digesting enzymes are used to manage T2DM but may harm organ function over time. Bioactive peptides offer a safer alternative, avoiding such adverse effects.
View Article and Find Full Text PDFPLoS One
January 2025
College of Computer and Information Technology, Northeast Petroleum University, China.
Background: There had been extensive research on the role of the gut microbiota in human health and disease. Increasing evidence suggested that the gut-brain axis played a crucial role in Parkinson's disease, with changes in the gut microbiota speculated to be involved in the pathogenesis of Parkinson's disease or interfere with its treatment. However, studies utilizing deep learning methods to predict Parkinson's disease through the gut microbiota were still limited.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
The diagnosis and early identification of intratracheal tumors relies on the experience of the operators and the specialists. Operations by physicians with insufficient experience may lead to misdiagnosis or misjudgment of tumors. To address this issue, a datasets for intratracheal tumor detection has been constructed to simulate the diagnostic level of experienced specialists, and a Knowledge Distillation-based Memory Feature Unsupervised Anomaly Detection (KD-MFAD) model was proposed to learn from this simulated experience.
View Article and Find Full Text PDFInt J Med Inform
December 2024
Chongqing Cancer Multiomics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing 400030, China. Electronic address:
Background: With advancements in healthcare, traditional VTE risk assessment tools are increasingly insufficient to meet the demands of high-quality care, underscoring the need for innovative and specialized assessment methods.
Objective: Owing to the remarkable success of machine learning in supervised learning and disease prediction, our objective is to develop a reliable and efficient model for assessing VTE risk by leveraging the fundamental data and clinical characteristics of colorectal cancer patients within our medical facility.
Methods: Six commonly used machine learning algorithms were utilized in our study to predict the occurrence of VTE in patients with rectal cancer.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!