Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objectives: In this paper, we developed a significant class of control issues regulated by nonlinear fractal order systems with input and output signals, our goal is to design a direct transcription method with impulsive instant order. Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose-insulin modeling. This work leads to the monitoring and assessment of comprehensive type-1 diabetes mellitus for controller design of artificial panaceas for the precision of the glucose-insulin glucagon in finite time with Caputo fractional approach for three primary subsystems.
Methods: For the proposed model, we admire the qualitative analysis with equilibrium points lying in the feasible region. Model satisfied the biological feasibility with the Lipschitz criteria and linear growth is examined, considering positive solutions, boundedness and uniqueness at equilibrium points with Leray-Schauder results under time scale ideas. Within each subsystem, the virtual control input laws are derived by the application of input to state theorems and Ulam Hyers Rassias.
Results: Chaotic Relation of Glucose insulin glucagon compartmental in the feasible region and stable in finite time interval monitoring is derived through simulations that are stable and bounded in the feasible regions. Additionally, as blood glucose is the only measurable state variable, the unscented power-law kernel estimator appropriately takes into account the significant problem of estimating inaccessible state variables that are bound to significant values for the glucose-insulin system. The comparative results on the simulated patients suggest that the suggested controller strategy performs remarkably better than the compared methods.
Conclusion: In the model under investigation, parametric uncertainties are identified since the glucose, insulin, and glucagon system's parameters are accurately measured numerically at different fractional order values. In terms of algorithm resilience and Caputo tracking in the presence of glucagon and insulin intake disturbance to maintain the glucose level. A comprehensive analysis of numerous difficult test issues is conducted in order to offer a thorough justification of the planned strategy to control the type 1 diabetes mellitus with designed the artificial pancreas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2024.108420 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!