Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Escherichia coli serotype O117 (ECO117) are pathogenic bacteria that produce Shiga toxin. Repeating units of the O antigen of ECO117 have the pentasaccharide structure [4-D-GalNAcβ1-3-L-Rhaα1-4-D-Glcα1-4-D-Galβ1-3-D-GalNAcα1-]n. The related non-pathogenic serotype (ECO107) contains a GlcNAc residue instead of Glc in the repeating unit, and the biosynthetic enzymes involved are almost identical. We assembled these repeating units based on GalNAcα-diphosphate-phenylundecyl (GalNAcα-PP-PhU), an analog of the natural intermediate GalNAc-diphosphate-undecaprenyl. We previously characterized α1,4-Glc-transferase WclY from ECO117 that transfers the Glc residue to Galβ1-3GalNAcα-PP-PhU and showed that Arg194Cys mutants of WclY are active α1,4-GlcNAc-transferases. In this work, the reaction products of WclY were used as acceptor substrates for the final enzymes in pathway, L-Rha-transferase WclX, and GalNAc-transferase WclW, demonstrating a complete synthesis of the ECO117 and O107 repeating units. WclX transfers L-Rha with high specificity for the WclY enzyme product as the acceptor and for TDP-L-Rha as the donor substrate. A number of highly conserved sequence motifs were identified (DDGSxD, DxDD, and YR). Mutational analysis revealed several Asp residues are essential for the catalysis of L-Rha transfer, while mutations of Asp44 and Arg212 substantially reduced the activity of WclX. WclW is a GT2 enzyme specific for UDP-GalNAc but with broad specificity for the acceptor substrate. Using L-Rhaα-p-nitrophenyl as an acceptor for WclW, the reaction product was analyzed by NMR demonstrating that GalNAc was transferred in a β1-3 linkage to L-Rha. The in vitro synthesis of the repeating units allows the production of vaccine candidates and identifies potential targets for inhibition of O antigen biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/glycob/cwae074 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!