Introduction: Heparin, a commonly used anticoagulant in cardiac surgery, binds to antithrombin III (ATIII) to prevent clot formation. However, heparin resistance (HR) can complicate surgical procedures, leading to increased thromboembolic risks and bleeding complications. Proper diagnosis and management of HR are essential for optimizing surgical outcomes.
Methodology: Diagnosis of HR involves assessing activated clotting time (ACT) and HR assays. Management strategies were identified through a comprehensive review of the literature, including studies exploring heparin dosage adjustments, antithrombin supplementation, and alternative anticoagulants in cardiac surgery patients with HR. A thorough search of relevant studies on HR was conducted using multiple scholarly databases and relevant keywords, resulting in 59 studies that met the inclusion criteria.
Discussion: HR occurs when patients do not respond adequately to heparin therapy, requiring higher doses or alternative anticoagulants. Mechanisms of HR include AT III deficiency, PF4 interference, and accelerated heparin clearance. Diagnosis involves assessing ACT and HR assays. HR in cardiac surgery can lead to thromboembolic events, increased bleeding, prolonged hospital stays, and elevated healthcare costs. Management strategies include adjusting heparin dosage, supplementing antithrombin levels, and considering alternative anticoagulants. Multidisciplinary management of HR involves collaboration among various specialities. Strategies include additional heparin doses, fresh frozen plasma (FFP) administration, and antithrombin concentrate supplementation. Emerging alternatives to heparin, such as direct thrombin inhibitors and nafamostat mesilate, are also being explored.
Conclusion: Optimizing the management of HR is crucial for improving surgical outcomes and reducing complications in cardiac surgery patients. Multidisciplinary approaches and emerging anticoagulation strategies hold promise for addressing this challenge effectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415039 | PMC |
http://dx.doi.org/10.1051/ject/2024015 | DOI Listing |
J Cancer Res Ther
December 2024
No. 2 Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
Objective: This retrospective study aimed to determine the need for lymph node resection during surgical treatment in patients with stage IA non-small-cell lung cancer (NSCLC).
Materials And Methods: A total of 1428 patients diagnosed with cT1N0M0 1 A stage NSCLC who underwent surgery were divided into two groups: lymphadenectomy (n = 1324) and nonlymphadenectomy (n = 104). The effects of lymph node resection on overall survival (OS) and recurrence-free survival (RFS) and on clinicopathological factors that affected the prognosis of the patients were investigated.
FASEB J
January 2025
Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Lung cancer progression is characterized by intricate epigenetic changes that impact critical metabolic processes and cell death pathways. In this study, we investigate the role of histone lactylation at the AIM2 locus and its downstream effects on ferroptosis regulation and lung cancer progression. We utilized a combination of biochemical assays, including chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and western blotting to assess histone lactylation levels and gene expression.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Department of Cardiovascular & Thoracic Surgery, Sandra Atlas Bass Heart Hospital at North Shore University Hospital, Northwell Health, 300 Community Drive, 1 DSU, Manhasset, NY, 11030, USA.
Purpose Of Review: This article discusses a tailored approach to managing cardiogenic shock and temporary mechanical circulatory support (tMCS). We also outline specific mobilization strategies for patients with different tMCS devices and configurations, which can be enabled by this tailored approach to cardiogenic shock management.
Recent Findings: Safe and effective mobilization of patients with cardiogenic shock receiving tMCS can be accomplished.
Pediatr Cardiol
January 2025
Department of Pediatrics, Inova Children's Hospital, Fairfax, VA, USA.
Data on outcomes of extracorporeal membrane oxygenation (ECMO) are limited in patients with pulmonary atresia intact ventricular septum (PAIVS). The objective of this study was to describe the use of ECMO and the associated outcomes in patients with PAIVS. We retrospectively reviewed neonates with PAIVS who received ECMO between 2009 and 2019 in 19 US hospitals affiliated with the Collaborative Research for the Pediatric Cardiac Intensive Care Society (CoRe-PCICS).
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan.
Objective: Based on our previous research, which demonstrated that elevated plasma endoglin (ENG) levels in lung cancer patients were associated with a better prognosis, increased sensitivity to pemetrexed, and enhanced tumor suppression, this study aims to validate these findings at the cellular level. The focus is on membrane and extracellular ENG and their influence on drug response and tumor cell behavior in non-small cell lung cancer (NSCLC) cells.
Methods: The correlation between ENG expression and pemetrexed-induced cytotoxicity in eight human non-squamous subtype NSCLC cell lines was analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!