The synthetical methodology for the [Cu(dmp)] (dmp = 2,9-dimethyl-1,10-phenanthroline; neocuproine) complexes has been systematically investigated by using various copper precursors, including CuCl, Cu(NO), and Cu(ClO). After an anion exchange to trifluoromethanesulfonimide (TFSI), the tetra-coordinated Cu(dmp)(TFSI)-Cu(ClO) (7.43%) outperformed the penta-coordinated Cu(dmp)(TFSI)(NO)-Cu(NO) (4.30%) and Cu(dmp)(TFSI)(Cl)-CuCl. Polymeric chalcogenides, including a conducting copolymeric electrode of PEDOT-PEDTT [PEDOT = poly(3,4-ethylenedioxythiophene); PEDTT = poly(3,4-ethylenedithiothiophene)] and a coordination polymeric electrode of silver bezeneselenolate ([Ag(SePh)]; mithrene), are introduced as the electrocatalysts for [Cu(dmp)] for the first time. After optimization, dye-sensitized solar cells (DSSCs) based on carbon cloth (CC)/AgSePh-30 (10.18%) showed superior electrocatalytic ability compared to the benchmark CC/Pt (7.43%) due to numerous active sites provided by electron-donating Se atoms, high film roughness, and bottom-up 2D charge transfer routes. The DSSC based on CC/PEDTT-50 (10.38%) also outperformed CC/Pt due to numerous active sites provided by electron-donating S atoms and proper energy band structure. This work sheds light on the future design and synthesis in Cu-complex mediators and functional polymeric chalcogenides for high-performance DSSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c08861 | DOI Listing |
ACS Appl Electron Mater
December 2024
Department of Electronics and Computer Science, University of Granada, Granada 18071, Spain.
In the evolution of pervasive electronics, it is imperative to significantly reduce the energy consumption of power systems and embrace sustainable materials and fabrication processes with minimal carbon footprint. Within this context, thermoelectric generators (TEGs) have garnered substantial attention in recent years because of the readily available thermal gradients in the environment, making them a promising energy-harvesting technology. Current commercial room-temperature thermoelectrics are based on scarce, expensive, and/or toxic V-VI chalcogenide materials, which limit their widespread use.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
Plateau-Rayleigh instability─a macroscopic phenomenon describing the volume-constant breakup of one-dimensional continuous fluids─has now been widely observed in adatoms, liquids, polymers, and liquid metals. This instability enables controlled wetting-dewetting behavior at fluid-solid interfaces and, thereby, the self-limited patterning into ordered structures. However, it has yet to be observed in conventional inorganic solids, as the rigid lattices restrict their "fluidity".
View Article and Find Full Text PDFACS Nano
November 2024
Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.
The energetically favorable formation of atomically precise clusters, known as magic size clusters, in the solution phase enables a precision nanoscale synthesis with exquisite uniformity. We report the synthesis of magic size clusters via vapor infiltration of atomic layer deposition precursors directly in a polymer thin film. Sequential infiltration of trimethylindium vapor and hydrogen sulfide gas into poly(methyl methacrylate) leads to the formation of clusters with uniform properties consistent with a magic size cluster─InS(CH).
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan.
The synthetical methodology for the [Cu(dmp)] (dmp = 2,9-dimethyl-1,10-phenanthroline; neocuproine) complexes has been systematically investigated by using various copper precursors, including CuCl, Cu(NO), and Cu(ClO). After an anion exchange to trifluoromethanesulfonimide (TFSI), the tetra-coordinated Cu(dmp)(TFSI)-Cu(ClO) (7.43%) outperformed the penta-coordinated Cu(dmp)(TFSI)(NO)-Cu(NO) (4.
View Article and Find Full Text PDFInorg Chem
August 2024
Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!