A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exceptional hardness in multiprincipal element alloys via hierarchical oxygen heterogeneities. | LitMetric

Refractory multiprincipal element alloys (RMPEAs) are potential successors to incumbent high-temperature structural alloys, although efforts to improve oxidation resistance with large additions of passivating elements have led to embrittlement. RMPEAs containing group IV and V elements have a balance of properties including moderate ductility, low density, and the necessary formability. We find that oxidation of group IV-V RMPEAs induces hierarchical heterogeneities, ranging from nanoscale interstitial complexes to tertiary phases. This microstructural hierarchy considerably enhances hardness without indentation cracking, with values ranging between 12.1 and 22.6 GPa from the oxide-adjacent metal to the surface oxides, a 3.7 to 6.8× increase over the interstitial-free alloy. Our fundamental understanding of the oxygen influence on phase formation informs future alloy design to enhance oxidation resistance and obtain exceptional hardness while preserving plasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414729PMC
http://dx.doi.org/10.1126/sciadv.ado9697DOI Listing

Publication Analysis

Top Keywords

exceptional hardness
8
multiprincipal element
8
element alloys
8
oxidation resistance
8
hardness multiprincipal
4
alloys hierarchical
4
hierarchical oxygen
4
oxygen heterogeneities
4
heterogeneities refractory
4
refractory multiprincipal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!