A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of immunotherapy response using mutations to cancer protein assemblies. | LitMetric

AI Article Synopsis

  • Immune checkpoint inhibitors have transformed cancer treatment, but many patients still do not respond well to therapy.
  • The study shows that by analyzing tumor mutation burden (TMB) alongside specific protein assemblies, researchers can predict immunotherapy responses in bladder and non-small cell lung cancers, identifying 13 crucial protein assemblies related to treatment outcomes.
  • These findings not only improve the ability to distinguish between patients who will respond and those who won’t, but they also highlight important genes influencing response, providing a valuable guide for future cancer treatment strategies.

Article Abstract

While immune checkpoint inhibitors have revolutionized cancer therapy, many patients exhibit poor outcomes. Here, we show immunotherapy responses in bladder and non-small cell lung cancers are effectively predicted by factoring tumor mutation burden (TMB) into burdens on specific protein assemblies. This approach identifies 13 protein assemblies for which the assembly-level mutation burden (AMB) predicts treatment outcomes, which can be combined to powerfully separate responders from nonresponders in multiple cohorts (e.g., 76% versus 37% bladder cancer 1-year survival). These results are corroborated by (i) engineered disruptions in the predictive assemblies, which modulate immunotherapy response in mice, and (ii) histochemistry showing that predicted responders have elevated inflammation. The 13 assemblies have diverse roles in DNA damage checkpoints, oxidative stress, or Janus kinase/signal transducers and activators of transcription signaling and include unexpected genes (e.g., PIK3CG and FOXP1) for which mutation affects treatment response. This study provides a roadmap for using tumor cell biology to factor mutational effects on immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414719PMC
http://dx.doi.org/10.1126/sciadv.ado9746DOI Listing

Publication Analysis

Top Keywords

protein assemblies
12
immunotherapy response
8
mutation burden
8
assemblies
5
prediction immunotherapy
4
response
4
response mutations
4
mutations cancer
4
cancer protein
4
assemblies immune
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!