There has been much progress in understanding human social learning, including recent studies integrating social information into the reinforcement learning framework. Yet previous studies often assume identical payoffs between observer and demonstrator, overlooking the diversity of social information in real-world interactions. We address this gap by introducing a socially correlated bandit task that accommodates payoff differences among participants, allowing for the study of social learning under more realistic conditions. Our Social Generalization (SG) model, tested through evolutionary simulations and two online experiments, outperforms existing models by incorporating social information into the generalization process, but treating it as noisier than individual observations. Our findings suggest that human social learning is more flexible than previously believed, with the SG model indicating a potential resource-rational trade-off where social learning partially replaces individual exploration. This research highlights the flexibility of humans' social learning, allowing us to integrate social information from others with different preferences, skills, or goals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441569PMC
http://dx.doi.org/10.1073/pnas.2404928121DOI Listing

Publication Analysis

Top Keywords

social learning
20
social
11
integrate social
8
human social
8
social generalization
8
learning
6
humans flexibly
4
flexibly integrate
4
social despite
4
despite interindividual
4

Similar Publications

Aspect category sentiment analysis based on pre-trained BiLSTM and syntax-aware graph attention network.

Sci Rep

January 2025

Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, 100081, China.

Aspect Category Sentiment Analysis (ACSA) is a fine-grained sentiment analysis task aimed at predicting the sentiment polarity associated with aspect categories within a sentence.Most existing ACSA methods are based on a given aspect category to locate sentiment words related to it. When irrelevant sentiment words have semantic meaning for the given aspect category, it may cause the problem that sentiment words cannot be matched with aspect categories.

View Article and Find Full Text PDF

Multi task opinion enhanced hybrid BERT model for mental health analysis.

Sci Rep

January 2025

Department of Computer Science, College of Computer and Information Sciences, King Saud University, 11543, Riyadh, Saudi Arabia.

Understanding the nuanced emotions and points of view included in user-generated content remains challenging, even though text data analysis for mental health is a crucial instrument for assessing emotional well-being. Most current models neglect the significance of integrating viewpoints in comprehending mental health in favor of single-task learning. To offer a more thorough knowledge of mental health, in this study, we present an Opinion-Enhanced Hybrid BERT Model (Opinion-BERT), built to handle multi-task learning for simultaneous sentiment and status categorization.

View Article and Find Full Text PDF

Cross-Cultural Sense-Making of Global Health Crises: A Text Mining Study of Public Opinions on Social Media Related to the COVID-19 Pandemic in Developed and Developing Economies.

J Med Internet Res

January 2025

Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.

Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.

Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.

View Article and Find Full Text PDF

Objective: From the beginning of the COVID-19 pandemic, there has been a proliferation of anti-Asian racism. In addition to being personal targets of racism, members of the Asian American community have also been vicariously exposed to repeated news and social media stories about anti-Asian racism. Emerging research suggests that vicarious exposure to racism during the pandemic is associated with decreased well-being, although mechanisms of action are not yet clear.

View Article and Find Full Text PDF

Studies around the world have reported that dental students experience higher stress compared to medical students. Prolonged and high perceived stress can be of a significant concern as it affects the personal, psychological, and professional well-being of the student, affecting quality of life. The aim of the study was to describe the perceived stress and coping strategies that undergraduate students at dental schools of Lahore, Pakistan employ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!