A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

S2P-Matching: Self-supervised Patch-based Matching Using Transformer for Capsule Endoscopic Images Stitching. | LitMetric

AI Article Synopsis

  • The Magnetically Controlled Capsule Endoscopy (MCCE) struggles with limited image capture, leading to fragmented visuals and challenges in finding specific areas of interest in the digestive tract.
  • A new method called S2P-Matching is introduced to enhance image stitching by simulating how the capsule camera operates, allowing for better analysis of gastrointestinal conditions.
  • This approach utilizes advanced deep learning techniques to improve the accuracy of matching MCCE images, yielding significant improvements in identifying correct matches and overall success rate, which could lead to greater use of MCCE for gastrointestinal examinations.

Article Abstract

The Magnetically Controlled Capsule Endoscopy (MCCE) has a limited shooting range, resulting in capturing numerous fragmented images and an inability to precisely locate and examine the region of interest (ROI) as traditional endoscopy can. Addressing this issue, image stitching around the ROI can be employed to aid in the diagnosis of gastrointestinal (GI) tract conditions. However, MCCE images possess unique characteristics, such as weak texture, close-up shooting, and large angle rotation, presenting challenges to current image-matching methods. In this context, a method named S2P-Matching is proposed for self-supervised patch-based matching in MCCE image stitching. The method involves augmenting the raw data by simulating the capsule endoscopic camera's behavior around the GI tract's ROI. Subsequently, an improved contrast learning encoder is utilized to extract local features, represented as deep feature descriptors. This encoder comprises two branches that extract distinct scale features, which are combined over the channel without manual labeling. The data-driven descriptors are then input into a Transformer model to obtain patch-level matches by learning the globally consented matching priors in the pseudo-ground-truth match pairs. Finally, the patch-level matching is refined and filtered to the pixel-level. The experimental results on real-world MCCE images demonstrate that S2P-Matching provides enhanced accuracy in addressing challenging issues in the GI tract environment with image parallax. The performance improvement can reach up to 203 and 55.8% in terms of NCM (Number of Correct Matches) and SR (Success Rate), respectively. This approach is expected to facilitate the wide adoption of MCCE-based gastrointestinal screening.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2024.3462502DOI Listing

Publication Analysis

Top Keywords

self-supervised patch-based
8
patch-based matching
8
capsule endoscopic
8
image stitching
8
mcce images
8
s2p-matching self-supervised
4
matching
4
matching transformer
4
transformer capsule
4
images
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!