Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motivation: Intracellular organelle networks (IONs) such as the endoplasmic reticulum (ER) network and the mitochondrial (MITO) network serve crucial physiological functions. The morphology of these networks plays a critical role in mediating their functions. Accurate image segmentation is required for analyzing the morphology and topology of these networks for applications such as molecular mechanism analysis and drug target screening. So far, however, progress has been hindered by their structural complexity and density.
Results: In this study, we first establish a rigorous performance baseline for accurate segmentation of these organelle networks from fluorescence microscopy images by optimizing a baseline U-Net model. We then develop the multi-resolution encoder (MRE) and the hierarchical fusion loss (Lhf) based on two inductive components, namely low-level features and topological self-similarity, to assist the model in better adapting to the task of segmenting IONs. Empowered by MRE and Lhf, both U-Net and Pyramid Vision Transformer (PVT) outperform competing state-of-the-art models such as U-Net++, HR-Net, nnU-Net, and TransUNet on custom datasets of the ER network and the MITO network, as well as on public datasets of another biological network, the retinal blood vessel network. In addition, integrating MRE and Lhf with models such as HR-Net and TransUNet also enhances their segmentation performance. These experimental results confirm the generalization capability and potential of our approach. Furthermore, accurate segmentation of the ER network enables analysis that provides novel insights into its dynamic morphological and topological properties.
Availability And Implementation: Code and data are openly accessible at https://github.com/cbmi-group/MRE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467052 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae559 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!