A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accurate segmentation of intracellular organelle networks using low-level features and topological self-similarity. | LitMetric

Accurate segmentation of intracellular organelle networks using low-level features and topological self-similarity.

Bioinformatics

State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

Published: October 2024

Motivation: Intracellular organelle networks (IONs) such as the endoplasmic reticulum (ER) network and the mitochondrial (MITO) network serve crucial physiological functions. The morphology of these networks plays a critical role in mediating their functions. Accurate image segmentation is required for analyzing the morphology and topology of these networks for applications such as molecular mechanism analysis and drug target screening. So far, however, progress has been hindered by their structural complexity and density.

Results: In this study, we first establish a rigorous performance baseline for accurate segmentation of these organelle networks from fluorescence microscopy images by optimizing a baseline U-Net model. We then develop the multi-resolution encoder (MRE) and the hierarchical fusion loss (Lhf) based on two inductive components, namely low-level features and topological self-similarity, to assist the model in better adapting to the task of segmenting IONs. Empowered by MRE and Lhf, both U-Net and Pyramid Vision Transformer (PVT) outperform competing state-of-the-art models such as U-Net++, HR-Net, nnU-Net, and TransUNet on custom datasets of the ER network and the MITO network, as well as on public datasets of another biological network, the retinal blood vessel network. In addition, integrating MRE and Lhf with models such as HR-Net and TransUNet also enhances their segmentation performance. These experimental results confirm the generalization capability and potential of our approach. Furthermore, accurate segmentation of the ER network enables analysis that provides novel insights into its dynamic morphological and topological properties.

Availability And Implementation: Code and data are openly accessible at https://github.com/cbmi-group/MRE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467052PMC
http://dx.doi.org/10.1093/bioinformatics/btae559DOI Listing

Publication Analysis

Top Keywords

accurate segmentation
12
organelle networks
12
intracellular organelle
8
low-level features
8
features topological
8
topological self-similarity
8
mito network
8
mre lhf
8
network
7
networks
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!