Purpose Of Review: The identification of isocitrate dehydrogenase (IDH) mutations has led to a transformation in our understanding of gliomas and has paved the way to a new era of targeted therapy. In this article, we review the classification of IDH-mutant glioma, standard of care treatment options, clinical evidence for mutant IDH (mIDH) inhibitors, and practical implications of the recent landmark INDIGO trial.
Recent Findings: In the phase 3 randomized placebo-controlled INDIGO trial, mIDH1/2 inhibitor vorasidenib increased progression-free survival among non-enhancing grade 2 IDH-mutant gliomas following surgery. This marks the first positive randomized trial of targeted therapy in IDH-mutant glioma, and led to the US Food and Drug Administration's approval of vorasidenib in August 2024 for grade 2 IDH-mutant glioma. Vorasidenib is a well-tolerated treatment that can benefit a subset of patients with IDH-mutant glioma. Targeting mIDH also remains a promising strategy for select groups of patients excluded from the INDIGO trial. Ongoing and future studies, including with new agents and with combination therapy approaches, may expand the benefit and unlock the potential of mIDH inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11910-024-01378-3 | DOI Listing |
Cancer Res
December 2024
Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.
IDH-mutant low-grade gliomas (LGGs) are slow-growing brain tumors that frequently progress to aggressive high-grade gliomas that have dismal outcomes. In a recent study, Wu and colleagues provide critical insights into the mechanisms underlying malignant progression by analyzing single-cell gene expression and chromatin accessibility across different tumor grades. Their findings support a two-phase model: in early stages, tumors are primarily driven by oligodendrocyte precursor-like cells and epigenetic alterations that silence tumor suppressors like CDKN2A and activate oncogenes such as PDGFRA.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, Fortis Memorial Research Institute, Gurugram, India.
Background: Isocitrate dehydrogenase (IDH) wild-type (IDH) glioblastomas (GB) are more aggressive and have a poorer prognosis than IDH mutant (IDH) tumors, emphasizing the need for accurate preoperative differentiation. However, a distinct imaging biomarker for differentiation mostly lacking. Intratumoral thrombosis has been reported as a histopathological biomarker for GB.
View Article and Find Full Text PDFNeurooncol Adv
December 2024
Division for Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany.
Background: This study aimed to explore the potential of the Advanced Data Analytics (ADA) package of GPT-4 to autonomously develop machine learning models (MLMs) for predicting glioma molecular types using radiomics from MRI.
Methods: Radiomic features were extracted from preoperative MRI of = 615 newly diagnosed glioma patients to predict glioma molecular types (IDH-wildtype vs IDH-mutant 1p19q-codeleted vs IDH-mutant 1p19q-non-codeleted) with a multiclass ML approach. Specifically, ADA was used to autonomously develop an ML pipeline and benchmark performance against an established handcrafted model using various MRI normalization methods (N4, Zscore, and WhiteStripe).
Curr Comput Aided Drug Des
January 2025
Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
Introduction: Astrocytoma is the most common glioma, accounting for about 65% of glioblastoma. Its malignant transformation is also one of the important causes of patient mortality, making it the most prevalent and difficult to treat in primary brain tumours. However, little is known about the underlying mechanisms of this transformation.
View Article and Find Full Text PDFNeurooncol Pract
February 2025
Neurological Surgery, UCSF Weill Institute for Neurosciences, San Francisco, California, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!