Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Achieving robust long-term durability with high catalytic activity at low iridium loading remains one of great challenges for proton exchange membrane water electrolyzer (PEMWE). Herein, we report the low-temperature synthesis of iridium oxide foam platelets comprising edge-sharing IrO octahedral honeycomb framework, and demonstrate the structural advantages of this material for multilevel tuning of anodic catalyst layer across atomic-to-microscopic scales for PEMWE. The integration of IrO octahedral honeycomb framework, foam-like texture and platelet morphology into a single material system assures the generation and exposure of highly active and stable iridium catalytic sites for the oxygen evolution reaction (OER), while facilitating the reduction of both mass transport loss and electronic resistance of catalyst layer. As a proof of concept, the membrane electrode assembly in single-cell PEMWE based on honeycomb-structured IrO foam platelets, with a low iridium loading (~0.3 mg/cm), is demonstrated to exhibit high catalytic activity at ampere-level current densities and to remain stable for more than 2000 hours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202415032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!