AI Article Synopsis

  • Systemic excess of glucocorticoids, such as in Cushing's syndrome, leads to various metabolic issues, influenced by the enzyme 11β-HSD1.
  • A study on mice revealed that high doses of corticosterone increased metabolic rates and carbohydrate use, especially in female wild type (WT) mice, but also caused fat accumulation.
  • Notably, 11β-HSD1 knockout mice were protected from these metabolic changes, highlighting its role in the effects of glucocorticoid excess and hyperphagia.

Article Abstract

Systemic glucocorticoid excess causes several adverse metabolic conditions, most notably Cushing's syndrome. These effects are amplified by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Here, we determined the less well-characterised effects of glucocorticoid excess, and the contribution of 11β-HSD1 amplification on metabolic rate in mice. Male and female C57BL/6J (wild type, WT) and 11β-HSD1 knockout (11β-HSD1 KO) mice were treated with high-dose corticosterone or a vehicle control for 3 weeks. Indirect calorimetry was conducted during the final week of treatment, with or without fasting, to determine the impact on metabolic rate. We found that corticosterone treatment elevated metabolic rate and promoted carbohydrate utilisation primarily in female WT mice, with effects more pronounced during the light phase. Corticosterone treatment also resulted in greater fat accumulation in female WT mice. Corticosterone induced hyperphagia was identified as a likely causal factor altering the respiratory exchange ratio (RER) but not energy expenditure (EE). Male and female 11β-HSD1 KO mice were protected against these effects. We identify novel metabolic consequences of sustained glucocorticoid excess, identify a key mechanism of hyperphagia, and demonstrate that 11β-HSD1 is required to manifest the full metabolic derangement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558800PMC
http://dx.doi.org/10.1530/JOE-24-0205DOI Listing

Publication Analysis

Top Keywords

glucocorticoid excess
16
metabolic rate
16
type 11β-hsd1
8
male female
8
11β-hsd1 mice
8
corticosterone treatment
8
female mice
8
metabolic
7
11β-hsd1
7
mice
5

Similar Publications

Glucocorticoid resistance syndrome (GRS) is caused by inactivating pathogenic variants in the glucocorticoid receptor gene . Reduced glucocorticoid receptor signaling leads to decreased tissue sensitivity to cortisol and resultant biochemical hypercortisolism without the classic clinical features of Cushing syndrome. Patients variably present with signs and symptoms of mineralocorticoid and androgen excess from ACTH overstimulation of the adrenal cortex.

View Article and Find Full Text PDF

Cushing syndrome.

Nat Rev Dis Primers

January 2025

Endocrine Division, Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Québec, Canada.

Cushing syndrome (CS) is a constellation of signs and symptoms caused by excessive exposure to exogenous or endogenous glucocorticoid hormones. Endogenous CS is caused by increased cortisol production by one or both adrenal glands (adrenal CS) or by elevated adrenocorticotropic hormone (ACTH) secretion from a pituitary tumour (Cushing disease (CD)) or non-pituitary tumour (ectopic ACTH secretion), which stimulates excessive cortisol production. CS is associated with severe multisystem morbidity, including impaired cardiovascular and metabolic function, infections and neuropsychiatric disorders, which notably reduce quality of life.

View Article and Find Full Text PDF

Reductive Adjuvant Nanosystem for Alleviated Atopic Dermatitis Syndromes.

ACS Nano

January 2025

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.

Atopic dermatitis (AD) is a recurrent and chronic inflammatory skin condition characterized by a high lifetime prevalence and significant impairment of patients' quality of life, primarily due to intense itching and discomfort. However, current pharmacological interventions provide only moderate efficacy and are frequently accompanied by adverse side effects. The immune-pathogenesis of AD involves dysregulation of the Th2 immune response and exacerbation of inflammation related to excessive reactive oxygen species (ROS).

View Article and Find Full Text PDF

Allergies are closely associated with sex-related hormonal variations that influence immune function, leading to distinct symptom profiles. Similar sex-based differences are observed in other immune disorders, such as autoimmune diseases. In allergies, women exhibit a higher prevalence of atopic conditions, such as allergic asthma and eczema, in comparison to men.

View Article and Find Full Text PDF

Classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency results in severe cortisol and aldosterone deficiency, leading to persistent adrenal stimulation and excess production of ACTH and adrenal androgens. This review examines the clinical considerations and challenges of balancing under- and overtreatment with glucocorticoids in adolescent and adult male individuals with CAH. Adolescents face many unique challenges that can hinder adherence, hormonal control, and transition to independence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!