In single vibronic level (SVL) fluorescence experiments, the electronically excited initial state is also excited in one or several vibrational modes. Because computing such spectra by evaluating all contributing Franck-Condon factors becomes impractical (and unnecessary) in large systems, here we propose a time-dependent approach based on Hagedorn wavepacket dynamics. We use Hagedorn functions-products of a Gaussian and carefully generated polynomials-to represent SVL initial states because in systems whose potential is at most quadratic, Hagedorn functions are exact solutions to the time-dependent Schrödinger equation and can be propagated with the same equations of motion as a simple Gaussian wavepacket. Having developed an efficient recursive algorithm to compute the overlaps between two Hagedorn wavepackets, we can now evaluate emission spectra from arbitrary vibronic levels using a single trajectory. We validate the method in two-dimensional global harmonic models by comparing it with quantum split-operator calculations. In addition, we study the effects of displacement, distortion (squeezing), and Duschinsky rotation on SVL fluorescence spectra. Finally, we demonstrate the applicability of the Hagedorn approach to high-dimensional systems on a displaced, distorted, and Duschinsky-rotated harmonic model with 100 degrees of freedom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0219005 | DOI Listing |
J Chem Phys
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Electronic spectra for OThF have been recorded using fluorescence excitation and two-photon resonantly enhanced ionization techniques. Multiple vibronic bands were observed in the 340-460 nm range. Dispersed fluorescence spectra provided ground state vibrational constants and evidence of extensive vibronic state mixing at higher excitation energies.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Huygens-Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
Fluorescence spectra of single terrylene molecules adsorbed on hexagonal boron nitride flakes were recorded at cryogenic temperatures. The pure electronic transitions of terrylene molecules are spread over a broad energy scale from 570 to 610 nm. Surprisingly, peaks in the vibrationally resolved fluorescence spectrum show intensity variations of ≤20-fold between molecules.
View Article and Find Full Text PDFACS Phys Chem Au
November 2024
Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States.
Herein, we report on the ultrafast photodissociation of nickel tetracarbonyl-a prototypical metal-ligand model system-at 197 nm. Using mid-infrared transient absorption spectroscopy to probe the bound C≡O stretching modes, we find evidence for the picosecond time scale production of highly vibronically excited nickel dicarbonyl and nickel monocarbonyl, in marked contrast with a prior investigation at 193 nm. Further spectral evolution with a 50 ps time constant suggests an additional dissociation step; the absence of any corresponding growth in signal strongly indicates the production of bare Ni, a heretofore unreported product from single-photon excitation of nickel tetracarbonyl.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Laboratory of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/A, Budapest H-1117, Hungary.
One of the most important areas of application for equation-of-motion coupled-cluster (EOM-CC) theory is the prediction, simulation, and analysis of various types of electronic spectra. In this work, the EOM-CC method for ionized states, known as EOM-IP-CC, is applied to the closely lying and coupled pair of states of the ozone cation─ and ─using highly accurate treatments including up to the full single, double, triple, and quadruple excitations (EOM-IP-CCSDTQ). Combined with a venerable and powerful method for calculating vibronic spectra from the Hamiltonian produced by EOM-IP-CC calculations, the simulations yield a spectrum that is in good agreement with the photoelectron spectrum of ozone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!