Lithium-rich early transition metal oxides are the source of excess removeable lithium that affords high energy density to lithium-rich battery cathodes. They are also candidates for solid electrolytes in all-solid-state batteries. These highly ionic compounds are sparse on phase diagrams of thermodynamically stable oxides, but soft chemical routes offer an alternative to explore new alkali-rich crystal chemistries. In this work, a new layered polymorph of LiNbO with coplanar [NbO] clusters is discovered through ion exchange chemistry. A more detailed study of the ion exchange reaction reveals that it takes place almost instantaneously, changing the crystal volume by more than 22% within seconds. The transformation of coplanar [NbO] in L-LiNbO into the supertetrahedral [NbO] clusters found in the stable cubic c-LiNbO is also explored. Furthermore, this synthetic pathway is extended to access a new layered polymorph of LiTaO. NMR crystallography with Li, Na, and Nb NMR, X-ray diffraction, neutron diffraction, and first-principles calculations is applied to AMO (A = Li, Na; M = Nb, Ta) to identify local and long-range atomic structure, to monitor the unusually rapid reaction progression, and to track the phase transitions from the metastable layered phases to the known compounds found using high-temperature synthesis. A mechanism is proposed whereby some sodium is retained at short reaction times, which then undergoes proton exchange during water washing, forming a phase with hydrogen bonds bridging the coplanar [NbO] clusters. This study has implications for lithium-rich transition metal oxides and associated battery materials and for ion exchange chemistry in non-framework structures. The role of techniques that can detect light elements, local structure, and subtle structural changes in soft-chemical synthesis is emphasized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4fd00103f | DOI Listing |
Biosensors (Basel)
November 2024
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
In this paper, we present a microfluidic flow cytometer for simultaneous imaging and dielectric characterization of individual biological cells within a flow. Utilizing a combination of dielectrophoresis (DEP) and high-speed imaging, this system offers a dual-modality approach to analyze both cell morphology and dielectric properties, enhancing the ability to analyze, characterize, and discriminate cells in a heterogeneous population. A high-speed camera is used to capture images of and track multiple cells in real-time as they flow through a microfluidic channel.
View Article and Find Full Text PDFJ Radiat Res
December 2024
Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
Dynamic WaveArc (DWA) is a technique used for continuous, non-coplanar volumetric-modulated arc therapy on the Vero4DRT platform. This study aimed to evaluate the application of single-isocenter DWA (SI-DWA) for treating multiple brain metastases by comparing dose distribution and irradiation time with multi-isocenter DWA (MI-DWA) through retrospective treatment planning. Treatment plans were developed for SI-DWA and MI-DWA in 14 cases with 3-5 brain metastases.
View Article and Find Full Text PDFHeliyon
December 2024
School of Microelectronics, Shandong University, Jinan, 250100, China.
In this paper, a new wideband coplanar waveguide (CPW) rhomboid slot antenna by using conductor-backed coplanar waveguide (CBCPW) feeding, which works at 4.6 GHz with a relative impedance bandwidth of about 55.6 %, and a gain of more than 5.
View Article and Find Full Text PDFMethodsX
December 2024
Department of Electrical Engineering, College of Engineering Al-Hussein Bin Talal, University, Ma'an 71111, Jordan.
Coplanar waveguide (CPW) transmission lines are valued for their planar design, low radiation, and minimized signal loss, but controlling their characteristic impedance remains a challenge. This study employs the Taguchi method, a statistical approach, to optimize the characteristic impedance by adjusting eight control factors: track width, track thickness, gap width, dielectric height, backplane thickness, conductor material conductivity, dielectric conductivity, and operational frequency. The analysis evaluates these factors across three levels to find optimal conditions, with dielectric height and track width identified as most influential.
View Article and Find Full Text PDFChemMedChem
December 2024
Novartis Institutes for BioMedical Research Basel, Global Discovery Chemistry, SWITZERLAND.
The pro-inflammatory cytokine interleukin-17A (IL-17) plays an important role in the body's defense against bacterial and fungal infections. However, overexpression of IL-17 has been associated with several diseases, including rheumatoid arthritis, asthma, psoriasis, and even cancer. The role of IL-17 in psoriasis has been confirmed by clinical use of IL-17 antibodies, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!