Lafora disease (LD), a fatal neurodegenerative disorder, is caused by mutations in the EPM2A gene encoding laforin phosphatase or NHLRC1 gene encoding malin ubiquitin ligase. LD symptoms include epileptic seizures, ataxia, dementia and cognitive decline. Studies on LD have primarily concentrated on the pathophysiology in the brain. A few studies have reported motor symptoms, muscle weakness and muscle atrophy. Intriguingly, skeletal muscles are known to accumulate Lafora polyglucosan bodies. Using laforin-deficient mice, an established model for LD, we demonstrate that LD pathology correlated with structural and functional impairments in the neuromuscular junction (NMJ). Specifically, we found impairment in NMJ transmission, which coincided with altered expression of NMJ-associated genes and reduced motor endplate area, fragmented junctions and loss of fully innervated junctions at the NMJ. We also observed a reduction in alpha-motor neurons in the lumbar spinal cord, with significant presynaptic morphological alterations. Disorganised myofibrillar patterns, slight z-line streaming and muscle atrophy were also evident in LD animals. In summary, our study offers insight into the neuropathic and myopathic alterations leading to motor deficits in LD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512103 | PMC |
http://dx.doi.org/10.1242/dmm.050905 | DOI Listing |
Alzheimers Dement
December 2024
Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, DISTALZ, Lille, France.
Background: BIN1 is a major susceptibility gene for AD and BIN1 protein interacts with Tau. However, the contribution of BIN1 and its isoforms to AD pathogenesis remains unclear. We recently described that human BIN1 isoform1 (BIN1iso1) induces an accumulation of early endosome vesicles leading to neurodegeneration in Drosophila retina and that the early endosome size regulation was conserved in human induced neurons.
View Article and Find Full Text PDFScience
January 2025
Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
Vertebrates stabilize gaze using a neural circuit that transforms sensed instability into compensatory counterrotation of the eyes. Sensory feedback tunes this vestibulo-ocular reflex throughout life. We studied the functional development of vestibulo-ocular reflex circuit components in the larval zebrafish, with and without sensation.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Nephrology, Transplantology and Internal Diseases, Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland.
J Physiol
December 2024
Université Paris Cité, CNRS, ENS Paris Saclay, Centre Borelli UMR 9010, Paris, France.
Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.
View Article and Find Full Text PDFCureus
November 2024
Neurology, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, USA.
Myasthenia gravis (MG) is one of the most common neuromuscular disorders. It is an antibody-mediated autoimmune disease affecting the neuromuscular junction, presenting with fluctuating muscle weakness that commonly affects the ocular, bulbar, proximal, and respiratory muscles. Treating MG in the older population with preexisting comorbidities can be challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!