Neuromuscular junction dysfunction in Lafora disease.

Dis Model Mech

Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.

Published: October 2024

Lafora disease (LD), a fatal neurodegenerative disorder, is caused by mutations in the EPM2A gene encoding laforin phosphatase or NHLRC1 gene encoding malin ubiquitin ligase. LD symptoms include epileptic seizures, ataxia, dementia and cognitive decline. Studies on LD have primarily concentrated on the pathophysiology in the brain. A few studies have reported motor symptoms, muscle weakness and muscle atrophy. Intriguingly, skeletal muscles are known to accumulate Lafora polyglucosan bodies. Using laforin-deficient mice, an established model for LD, we demonstrate that LD pathology correlated with structural and functional impairments in the neuromuscular junction (NMJ). Specifically, we found impairment in NMJ transmission, which coincided with altered expression of NMJ-associated genes and reduced motor endplate area, fragmented junctions and loss of fully innervated junctions at the NMJ. We also observed a reduction in alpha-motor neurons in the lumbar spinal cord, with significant presynaptic morphological alterations. Disorganised myofibrillar patterns, slight z-line streaming and muscle atrophy were also evident in LD animals. In summary, our study offers insight into the neuropathic and myopathic alterations leading to motor deficits in LD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512103PMC
http://dx.doi.org/10.1242/dmm.050905DOI Listing

Publication Analysis

Top Keywords

neuromuscular junction
8
lafora disease
8
gene encoding
8
muscle atrophy
8
junction dysfunction
4
dysfunction lafora
4
disease lafora
4
disease fatal
4
fatal neurodegenerative
4
neurodegenerative disorder
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, DISTALZ, Lille, France.

Background: BIN1 is a major susceptibility gene for AD and BIN1 protein interacts with Tau. However, the contribution of BIN1 and its isoforms to AD pathogenesis remains unclear. We recently described that human BIN1 isoform1 (BIN1iso1) induces an accumulation of early endosome vesicles leading to neurodegeneration in Drosophila retina and that the early endosome size regulation was conserved in human induced neurons.

View Article and Find Full Text PDF

Sensation is dispensable for the maturation of the vestibulo-ocular reflex.

Science

January 2025

Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.

Vertebrates stabilize gaze using a neural circuit that transforms sensed instability into compensatory counterrotation of the eyes. Sensory feedback tunes this vestibulo-ocular reflex throughout life. We studied the functional development of vestibulo-ocular reflex circuit components in the larval zebrafish, with and without sensation.

View Article and Find Full Text PDF
Article Synopsis
  • Skeletal muscle relaxants are commonly used in anesthesia for surgeries, mechanical ventilation, and intubation, creating a conduction block at the neuromuscular junction.
  • Reversal agents, like neostigmine and sugammadex, help terminate the neuromuscular blockade and prevent residual effects, but their efficacy can be affected by liver and kidney dysfunction.
  • Liver damage, which can stem from various causes including drug toxicity and metabolic disorders, impairs drug metabolism and can lead to systemic complications, ultimately impacting the use of muscle relaxants in patients with liver disease.
View Article and Find Full Text PDF

Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.

View Article and Find Full Text PDF

Myasthenia gravis (MG) is one of the most common neuromuscular disorders. It is an antibody-mediated autoimmune disease affecting the neuromuscular junction, presenting with fluctuating muscle weakness that commonly affects the ocular, bulbar, proximal, and respiratory muscles. Treating MG in the older population with preexisting comorbidities can be challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!