Objective: This study aimed to develop and assess a novel reverse dot blot assay for the simultaneous detection of 10 types of α-thalassemia alleles in the Chinese population, including six common variants of-, -α, -α, α, α, and α, and four rare variants of ααα, ααα, deletion and deletion.
Methods: The novel thalassemia gene assay utilized a two-tier multiplex polymerase chain reaction amplification system and one round of hybridization. Genomic DNA samples were sourced from three hospitals in southern China. Each clinically validated DNA sample was re-evaluated using the new multiplex polymerase chain reaction/reverse dot blot assay Ⅲ (M-PCR/RDB Ⅲ).
Results: The study analyzed a total of 1,148 unrelated participants, consisting of 810 thalassemia patients and 338 healthy control subjects. Valid hybridization results were obtained for 1,147 samples, with one case (thalassemia carrier) being excluded from the study due to the poor quality of DNA. All 1,147 samples, including those with α heterozygous thalassemia, α homozygous thalassemia, α compound heterozygous thalassemia, and control subjects were accurately genotyped, showing 100% concordance with the reference assays.
Conclusion: The novel M-PCR/RDB Ⅲ assay proved to be simple, rapid, and precise, indicating its potential for genetic screening and clinical diagnosis of both common and rare α-thalassemia variants in Chinese populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410688 | PMC |
http://dx.doi.org/10.3389/fgene.2024.1457248 | DOI Listing |
Alzheimers Dement
December 2024
University of California, San Francisco (UCSF), San Francisco, CA, USA.
Background: Microglia responses to Aβ and tau pathology and the dysregulation of the microglial role in synaptic function may determine the onset and course of Alzheimer's disease (AD). While significant work has been performed in mouse models, we still lack a complete understanding of physiological and pathological microglial states and functions in human AD brain.
Method: For immunoblotting of brain homogenates against multiple microglial markers, and flow cytometry (FC) analysis of synaptosomal fractions (SNAP25/CD47/Aβ(10G4)/phospho-tau(AT8)), 49 cryopreserved human parietal cortex samples were categorized into four groups: low pathology control (LPC), high Aβ control (HAC), high pathology control (HPC), and AD.
Alzheimers Dement
December 2024
Texas Tech University Health and Sciences Center El Paso, El Paso, TX, USA.
Background: Mitochondria plays a crucial role at synapses in providing synaptic energy, healthy synaptic function, and cognitive functions. Amyloid-beta and phosphorylated tau protein oligomers cause severe mitochondrial defects in Alzheimer's disease (AD), which leads to the lack of synaptic energy and impaired synapse functions in AD. MicroRNAs (miRNAs) present within the mitochondria are involved in multiple mitochondrial activities and mitochondrial function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Florida College of Medicine, Gainesville, FL, USA.
Background: The presence of Tau pathology is strongly associated with the clinical symptoms and cognitive decline found in Alzheimer's disease (AD), suggesting that targeting pathological tau may be a more effective therapeutic approach. Microglia have been implicated in tauopathies as their activation is strongly related to the progression of tau phosphorylation and aggregation potentially due to dysfunctional lysosomal activity. Cannabinoid type 2 receptors (CB2) are highly expressed in immune cells and upregulated in activated microglia under conditions of neurologic disease, such as AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: To date, Alzheimer's disease (AD) research has principally focused on neurons. In contrast, recent studies suggest that genetic mechanisms drive microglia towards prolonged inflammation in AD brains, exacerbating neurodegeneration. Indeed, many of the 70 disease-associated loci uncovered with genome-wide association studies (GWAS) reside near genes related to microglial function, such as TREM2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
Background: Alzheimer's disease (AD) is a neurodegenerative disease that causes progressive cognitive decline over age 65. Individuals suffering from this disease suffer memory loss, and histological examination of the brains. Okadaic acid (OA), is a potent and selective inhibitor of protein phosphatases 1 and 2A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!