A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hybrid Deep Learning and Model-Based Needle Shape Prediction. | LitMetric

AI Article Synopsis

  • Needle insertion using flexible bevel tip needles is a key minimally-invasive technique for prostate cancer surgery, which allows for precise navigation around sensitive anatomy.
  • The study introduces a hybrid deep learning and model-based method for predicting needle trajectory during insertion using a validated Lie-group theory approach, addressing the existing challenges in this area.
  • The proposed method shows promising results, achieving an average prediction error of 1.03 mm in needle shape across various tissue models, and demonstrates the ability to further refine the predictive model through self-supervised learning and transfer learning techniques.

Article Abstract

Needle insertion using flexible bevel tip needles are a common minimally-invasive surgical technique for prostate cancer interventions. Flexible, asymmetric bevel tip needles enable physicians for complex needle steering techniques to avoid sensitive anatomical structures during needle insertion. For accurate placement of the needle, predicting the trajectory of these needles intra-operatively would greatly reduce the need for frequently needle reinsertions thus improving patient comfort and positive outcomes. However, predicting the trajectory of the needle during insertion is a complex task that has yet to be solved due to random needle-tissue interactions. In this paper, we present and validate for the first time a hybrid deep learning and model-based approach to handle the intra-operative needle shape prediction problem through, leveraging a validated Lie-group theoretic model for needle shape representation. Furthermore, we present a novel self-supervised learning and method in conjunction with the Lie-group shape model for training these networks in the absence of data, enabling further refinement of these networks with transfer learning. Needle shape prediction was performed in single-layer and double-layer homogeneous phantom tissue for C- and S-shape needle insertions. Our method demonstrates an average root-mean-square prediction error of 1.03 mm over a dataset containing approximately 3,000 prediction samples with maximum prediction steps of 110 mm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410364PMC
http://dx.doi.org/10.1109/jsen.2024.3386120DOI Listing

Publication Analysis

Top Keywords

needle shape
16
shape prediction
12
needle insertion
12
needle
11
hybrid deep
8
deep learning
8
learning model-based
8
bevel needles
8
predicting trajectory
8
prediction
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!