Secretory leukocyte protease inhibitor (SLPI) is an important cationic protein involved in innate airway immunity and highly expressed in mucosal secretions, shown to target and inhibit neutrophil elastase (NE), cathepsin G and trypsin activity to limit proteolytic activity. In addition to the potent anti-protease activity, SLPI has been demonstrated to exert a direct anti-inflammatory effect, which is mediated via increased inhibition and competitive binding of NF-κB, regulating immune responses through limiting transcription of pro-inflammatory gene targets. In muco-obstructive lung disorders, such as Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF), there is an observed elevation in airway SLPI protein concentrations as a result of increased lung inflammation and disease progression. However, studies have identified COPD patients presenting with diminished SLPI concentrations. Furthermore, there is a decrease in SLPI concentrations through cleavage and subsequent inactivation by NE degradation in aeruginosa infected people with CF (pwCF). These observations suggest reduced SLPI protein levels may contribute to the compromising of airway immunity indicating a potential role of decreased SLPI levels in the pathogenesis of muco-obstructive lung disease. The Beta Epithelial Na+ Channel transgenic (ENaC-Tg) mouse model phenotype exhibits characteristics which replicate the pathological features observed in conditions such as COPD and CF, including mucus accumulation, alterations in airway morphology and increased pulmonary inflammation. To evaluate the effect of SLPI in muco-obstructive pulmonary disease, ENaC-Tg mice were crossed with SLPI knock-out (SLPI) mice, generating a ENaC-Tg/SLPI colony to further investigate the role of SLPI in chronic lung disease and determine the effect of its ablation on disease pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410634 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1433642 | DOI Listing |
Cells
December 2024
College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
Many efforts have been made to reveal the mechanisms underlying skeletal muscle development because of its importance in animals. However, knowledge on chromatin accessibility, a prerequisite for gene expression, remains limited. Here, dynamic changes in chromatin accessibility were analyzed in the skeletal muscles of Min pigs at the ages of 30, 90, and 210 d using an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq).
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
Background/objectives: Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE), involving immune complex deposition in the kidneys. While renal biopsy is the diagnostic gold standard, its invasiveness limits frequent use, driving the need for non-invasive urinary biomarkers to monitor disease progression and response to treatment. This study aimed to identify and validate urinary biomarkers for LN.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pathology, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.
Introduction: Osteosarcoma (OS) is a malignancy of the bone that mainly afflicts younger individuals. Despite existing treatment approaches, patients with metastatic or recurrent disease generally face poor prognoses. A greater understanding of the tumor microenvironment (TME) is critical for enhancing outcomes in OS patients.
View Article and Find Full Text PDFExpert Opin Ther Targets
December 2024
Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan.
Lyme disease, caused by , is the most common tick-borne infection in the United States. Arthritis is a major clinical manifestation of infection, and synovial tissue damage has been attributed to the excessive pro-inflammatory responses. The secretory leukocyte protease inhibitor (SLPI) promotes tissue repair and exerts anti-inflammatory effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!