An electrochemical approach toward the synthesis of diaryliodonium salts based on anodic C-I coupling between aryl iodides and arenes is presented. In contrast to previous protocols, our method requires no chemical oxidants, strong acids, or fluorinated solvents. A further advantage is that by use of the appropriate supporting electrolyte, the counterion of choice can be introduced, which is time- and cost-saving as compared to postsynthesis ion exchange. This "anion-flexibility" is particularly interesting when considering the pronounced effect of the counterion on the reactivity of diaryliodonium species in aryl transfer reactions. The scope of our method comprises 24 examples with isolated yields of up to 99%. Scalability was demonstrated by the synthesis on a gram scale. Furthermore, it was shown that the diaryliodonium-containing post-electrolysis solution can be used without further workup as a reactive medium for -arylation reactions. Finally, a series of -substituted diaryliodonium compounds was studied using linear sweep voltammetry on a microelectrode and analyzed with respect to the influence of the electronic structure on the redox behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460726 | PMC |
http://dx.doi.org/10.1021/acs.joc.4c01521 | DOI Listing |
Chem Commun (Camb)
January 2025
College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
We have developed transition-metal-free synthetic methodologies for dibenzoxazepinones utilizing salicylamides as starting materials and employing two distinct types of successive hypervalent iodine-mediated arylocyclizations. This synthetic protocol encompasses selective phenol -arylation of salicylamides with diaryliodonium salts, followed by electrophilic aromatic amination utilizing chemically or electronically generated hypervalent iodine reagents in the second stage of the process.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 197022 St. Petersburg, Russia.
-succinimidyl-[F]fluorobenzoate ([F]SFB) is commonly prepared through a three-step procedure starting from [F]fluoride ion. A number of methods for the single-step radiosynthesis of [F]SFB have been introduced recently, including the radiofluorination of diaryliodonium salts and the Cu-mediated F-fluorination of pinacol aryl boronates and aryl tributyl stannanes, but they still have the drawbacks of lengthy product purification procedures. In the present work, two approaches for the direct labeling of [F]SFB from diaryliodonium (DAI) salt () and pinacol aryl boronate () are evaluated, with a major focus on developing a fast and simple SPE-based purification procedure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China.
An efficient enantioselective coupling reaction between sulfenamides and cyclic diaryliodonium salts is established via adaptive Cu/anionic stereogenic-at-Co(III) complex combined catalysis, precisely synthesizing a broad range of axially chiral sulfilimines with excellent enantioselectivities, diastereoselectivities, regioselectivities, and chemoselectivities (67 examples under same conditions, up to 98 % ee). The following thermodynamically controlled pyramidal inversion enables efficient stereodivegent synthesis of all four stereoisomers. Mechanistic studies suggest that anionic stereogenic-at-cobalt(III) complexes serve as counteranions of diaryliodonium and anionic ligand of Cu(I) catalyst simultaneously, which could be regarded as an explanation for outstanding selectivities.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany.
A diverse set of hydroxy-benzo[]iodadioxaphosphinine oxides and derived diaryl iodonium salts are prepared and two examples are characterized by X-ray crystallography, featuring an out-of-plane geometry of the hypervalent bond for both compound classes. Treatment of the phosphate-stabilized diaryliodonium salts with Ca(OH) results in an efficient base-induced intramolecular aryl migration under aqueous conditions, yielding iodo-substituted diaryl ethers with yields up to 94%. Our findings highlight the synthetic potential of this previously underexplored compound class in organic transformations.
View Article and Find Full Text PDFBeilstein J Org Chem
November 2024
Department of Chemistry, SAS, Vellore Institute of Technology Chennai, Chennai-600 127, Tamil Nadu, India.
Diaryliodonium salts have become widely recognized as arylating agents in the last two decades. Both, symmetrical and unsymmetrical forms of these salts serve as effective electrophilic arylating reagents in various organic syntheses. The use of diaryliodoniums in C-C and carbon-heteroatom bond formations, particularly under metal-free conditions, has further enhanced the popularity of these reagents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!