The enhancement of plant growth by soil fertilization and microbial inoculation involves different mechanisms, particularly by altering the phyllosphere microbiome. This study investigated how nitrogen (N) fertilization, Pseudomonas fluorescens strain R124 inoculation and their combined effects influence the growth of different-aged Salix matsudana cuttings by modulating N dynamics within the phyllosphere microbiome. Results showed that P. fluorescens inoculation was significantly more effective than N fertilization alone, enhancing biomass, plant nutrient uptake, soil nutrient content and root development by 90.51%, 18.18%, 72.74% and 126.20%, respectively. Crucially, the inoculation notably shifted the beta-diversity of the phyllosphere microbial community, with K-strategy fungi enhancing plant N fixation and subsequent plant growth. Cuttings from middle-aged forests displayed more robust growth than those from young-aged, associated with a varied impact on phyllosphere fungi, notably increasing the relative abundance of Myriangiales in young (76.37%) and Capnodiales in middle-aged cuttings (42.37%), which improve phyllosphere stability and plant health. These findings highlight the effectiveness of microbial inoculation over N fertilization in promoting plant growth and provide valuable insights for the sustainable management of willow plantations at different stages of development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.15162 | DOI Listing |
J Plant Physiol
January 2025
Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain.
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFWiad Lek
January 2025
DEPARTMENT OF PHARMACOLOGY AND TOXICOLOGY, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, KUFA, IRAQ.
Objective: Aim: Testing Cordia myxa extract on colon cancer cell line and caspase-3 gene and COX-2 protein expression.
Patients And Methods: Materials and Methods: This study used Cordia myxa ethanolic extract at various dosages on SW480 cells. Cell proliferation was measured using MTT, also examined effect of Cordia myxa extract on caspase-3 gene expression using quantitative real-time polymerase chain reaction.
Plant Physiol
January 2025
State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.
Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Geography, Nanjing Normal University, Nanjing, 210023, China.
Despite advances in dispersal mechanisms and risk assessment of antibiotic resistance genes (ARGs), how plants influence ARG contamination in agricultural soils remains underexplored. Here, the impacts of plant species and diversity on ARGs and mobile genetic elements (MGEs) in three agricultural soils are comprehensively investigated in a pot experiment. The results indicate that increased plant diversity reduces ARGs and MGEs abundance by 19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!