Genome-scale models in human metabologenomics.

Nat Rev Genet

Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.

Published: September 2024

AI Article Synopsis

  • * Genome-scale metabolic models (GEMs) serve as extensive databases that integrate information about genes, proteins, and metabolites, and are used to analyze complex metabolic networks and predict their behavior.
  • * Enhanced GEMs now incorporate multi-omics data from cells, tissues, and microbiomes, leading to improved treatment designs and diagnostic tools for metabolic diseases, as well as more effective identification of mechanisms and drug targets.

Article Abstract

Metabologenomics integrates metabolomics with other omics data types to comprehensively study the genetic and environmental factors that influence metabolism. These multi-omics data can be incorporated into genome-scale metabolic models (GEMs), which are highly curated knowledge bases that explicitly account for genes, transcripts, proteins and metabolites. By including all known biochemical reactions catalysed by enzymes and transporters encoded in the human genome, GEMs analyse and predict the behaviour of complex metabolic networks. Continued advancements to the scale and scope of GEMs - from cells and tissues to microbiomes and the whole body - have helped to design effective treatments and develop better diagnostic tools for metabolic diseases. Furthermore, increasing amounts of multi-omics data are incorporated into GEMs to better identify the underlying mechanisms, biomarkers and potential drug targets of metabolic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41576-024-00768-0DOI Listing

Publication Analysis

Top Keywords

multi-omics data
8
data incorporated
8
metabolic diseases
8
genome-scale models
4
models human
4
human metabologenomics
4
metabologenomics metabologenomics
4
metabologenomics integrates
4
integrates metabolomics
4
metabolomics omics
4

Similar Publications

Introduction: Necroptosis has emerged as a promising biomarker for predicting immunotherapy responses across various cancer types. Its role in modulating immune activation and therapeutic outcomes offers potential for precision oncology.

Methods: A comprehensive pan-cancer analysis was performed using bulk RNA sequencing data to develop a necroptosis-related gene signature, termed Necroptosis.

View Article and Find Full Text PDF

Melanoma, a malignant skin tumor, presents significant treatment challenges, particularly in unresectable and metastatic cases. While immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have brought new hope, their efficacy is limited by low response rates and significant immune-mediated adverse events (irAEs). Through multi-omics data analysis, it is discovered that the spatial co-localization of CD73 and PD-L1 in melanoma correlates with improved progression-free survival (PFS), suggesting a synergistic potential of their inhibitors.

View Article and Find Full Text PDF

Objective: Cognitive impairment occurs throughout the entire course of and affects the work and life of patients with major depressive disorder (MDD). The gut microbiota, kynurenine pathway (KP) and inflammatory response may have important roles in the mechanism of cognitive impairment in MDD patients. Consequently, our goal was to investigate the association among the gut microbiota, inflammation, KP, and cognition in MDD.

View Article and Find Full Text PDF

Attenuated sex-related DNA methylation differences in cancer highlight the magnitude bias mediating existing disparities.

Biol Sex Differ

December 2024

State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.

Background: DNA methylation (DNAm) influences both sex differences and cancer development, yet the mechanisms connecting these factors remain unclear.

Methods: Utilizing data from The Cancer Genome Atlas, we conducted a comprehensive analysis of sex-related DNAm effects in nine non-reproductive cancers, compared to paired normal adjacent tissues (NATs), and validated the results using independent datasets. First, we assessed the extent of sex differential DNAm between cancers and NATs to explore how sex-related DNAm differences change in cancerous tissues.

View Article and Find Full Text PDF

Uncovering the molecular networks of ferroptosis in the pathogenesis of type 2 diabetes and its complications: a multi-omics investigation.

Mol Med

December 2024

Department of Nephrology, National Key Laboratory of Diabetes, The Second Hospital of Jilin University, No. 991 Yatai Street, Nanguan District, Changchun, Jilin, China.

Background: Diabetes is a multi-factorial disorder and related complications constitute one of the principal causes of global mortality and disability. The role of ferroptosis in diabetes and its complications is intricate and significant. This study endeavors to disclose the role of ferroptosis in the aforementioned diseases from multiple perspectives through multi-omics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: