Hypertension is characterized by resistance artery remodeling driven by oxidative stress and fibrosis. We previously showed that an activin A antagonist, follistatin, inhibited renal oxidative stress and fibrosis in a model of hypertensive chronic kidney disease. Here, we investigate the effects of follistatin on blood pressure and vascular structure and function in models of essential and secondary hypertension. 5/6 nephrectomised mice, a model of secondary hypertension, were treated with either exogenous follistatin or with a follistatin miRNA inhibitor to increase endogenous follistatin for 9 weeks. Blood pressure in mice was measured by tail cuff. Spontaneously hypertensive rats, a model of essential hypertension, were treated with follistatin for 8 weeks. Wistar Kyoto (WKY) rats were used as the normotensive control. Blood pressure in rats was measured by radiotelemetry. Mouse superior mesenteric arteries and rat first branch mesenteric arteries were isolated for structural and functional analyses. In both models, follistatin significantly lowered blood pressure and improved vascular structure, decreasing medial thickness and collagen content. Follistatin also reduced agonist-induced maximum contraction and improved endothelium-dependent relaxation. Increased vessel oxidative stress was attenuated by follistatin in both models. In ex vivo WKY vessels, activin A increased oxidative stress, augmented constriction, and decreased endothelium-dependent relaxation. Inhibition of oxidative stress restored vessel relaxation. This study demonstrates that follistatin lowers blood pressure and improves vascular structure and function in models of essential and secondary hypertension. Effects were likely mediated through its inhibition of activin A and oxidative stress. These data suggest a potential therapeutic role for follistatin as a novel antihypertensive agent. Follistatin, through antagonization of activin A, inhibits oxidative stress and improves vascular structure and function in resistance arteries from models of essential and secondary HTN. FST decreases collagen content and vascular ROS. Functionally, FST improves endothelium-dependent relaxation and decreases maximal vasoconstriction. Improved resistance artery structure and function are correlated with a decrease in BP in both models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41440-024-01872-8 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Biochemistry, Republic of Turkey Ministry of Health Taksim Training and Research Hospital, İstanbul, Turkey.
This prospective observational study aimed to compare abdominal hysterectomy (AH), vaginal hysterectomy (VH), and total laparoscopic hysterectomy (TLH) in terms of oxidative stress (OS) by measuring serum levels of total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI). Of the 3 groups, namely, AH, VH, and TLH, 22 patients were enrolled in each to investigate the aim of the study mentioned above. Patient demographics, clinical and surgical characteristics, and preoperative and postoperative (0th and 24th hours) serum TAS, TOS, and OSI levels were investigated.
View Article and Find Full Text PDFJ Neurosurg
January 2025
4Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia.
Objective: The pathophysiology of delayed cerebral ischemia (DCI) is not fully elucidated. The lack of accurate diagnostic tools increases the probability of delayed diagnosis and timely treatment. The authors assessed the relationship of 8-iso-prostaglandin F2α (F2-IsoP) and oxidative stress biomarkers, nitric oxide synthase 3 (NOS3) and nicotinamide adenine dinucleotide phosphate (NADPH), with DCI after aneurysmal subarachnoid hemorrhage (aSAH).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.
20% acute pancreatitis (AP) develops into severe AP (SAP), a global health crisis, with an increased mortality rate to 30%-50%. Mitochondrial damage and immune disorders are direct factors, which exacerbate the occurrence and progression of AP. So far, mitochondrial and immunity injury in SAP remains largely elusive, with no established treatment options available.
View Article and Find Full Text PDFSci Adv
January 2025
Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial reducing cofactor for reductive biosynthesis and protection from oxidative stress. To fulfill their heightened anabolic and reductive power demands, cancer cells must boost their NADPH production. Progrowth and mitogenic protein kinases promote the activity of cytosolic NAD kinase (NADK), which produces NADP, a limiting NADPH precursor.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China.
Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!