Effect of Deep Learning Image Reconstruction on Image Quality and Pericoronary Fat Attenuation Index.

J Imaging Inform Med

Department of Radiology, BenQ Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.

Published: September 2024

AI Article Synopsis

  • The study compares image quality and fat attenuation index (FAI) in coronary artery CT angiography (CCTA) using different tube voltages and two reconstruction methods: deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASIR-V).
  • 301 patients were divided into two groups based on tube voltage settings, with image quality assessed at 120 kV and lower voltages chosen according to the patients' BMI.
  • Results showed that DLIR-H significantly reduced image noise and improved CNR, subjective scores, and FAI across all tube voltages compared to ASIR-V, while low tube voltage combined with DLIR-H maintained good image quality compared to 120 kV.

Article Abstract

To compare the image quality and fat attenuation index (FAI) of coronary artery CT angiography (CCTA) under different tube voltages between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASIR-V). Three hundred one patients who underwent CCTA with automatic tube current modulation were prospectively enrolled and divided into two groups: 120 kV group and low tube voltage group. Images were reconstructed using ASIR-V level 50% (ASIR-V50%) and high-strength DLIR (DLIR-H). In the low tube voltage group, the voltage was selected according to Chinese BMI classification: 70 kV (BMI < 24 kg/m), 80 kV (24 kg/m ≤ BMI < 28 kg/m), 100 kV (BMI ≥ 28 kg/m). At the same tube voltage, the subjective and objective image quality, edge rise distance (ERD), and FAI between different algorithms were compared. Under different tube voltages, we used DLIR-H to compare the differences between subjective, objective image quality, and ERD. Compared with the 120 kV group, the DLIR-H image noise of 70 kV, 80 kV, and 100 kV groups increased by 36%, 25%, and 12%, respectively (all P < 0.001); contrast-to-noise ratio (CNR), subjective score, and ERD were similar (all P > 0.05). In the 70 kV, 80 kV, 100 kV, and 120 kV groups, compared with ASIR-V50%, DLIR-H image noise decreased by 50%, 53%, 47%, and 38-50%, respectively; CNR, subjective score, and FAI value increased significantly (all P < 0.001), ERD decreased. Compared with 120 kV tube voltage, the combination of DLIR-H and low tube voltage maintains image quality. At the same tube voltage, compared with ASIR-V, DLIR-H improves image quality and FAI value.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10278-024-01234-3DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning image
8
image reconstruction
8
image quality
8
fat attenuation
8
low tube
8
tube voltage
8
voltage group
8
image
4
reconstruction image
4

Similar Publications

Importance: Lung ultrasound (LUS) aids in the diagnosis of patients with dyspnea, including those with cardiogenic pulmonary edema, but requires technical proficiency for image acquisition. Previous research has demonstrated the effectiveness of artificial intelligence (AI) in guiding novice users to acquire high-quality cardiac ultrasound images, suggesting its potential for broader use in LUS.

Objective: To evaluate the ability of AI to guide acquisition of diagnostic-quality LUS images by trained health care professionals (THCPs).

View Article and Find Full Text PDF

Nondestructive Mechanical Characterization of Bioengineered Tissues by Digital Holography.

ACS Biomater Sci Eng

January 2025

Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.

Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.

View Article and Find Full Text PDF

Speech Technology for Automatic Recognition and Assessment of Dysarthric Speech: An Overview.

J Speech Lang Hear Res

January 2025

Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.

Purpose: In this review article, we present an extensive overview of recent developments in the area of dysarthric speech research. One of the key objectives of speech technology research is to improve the quality of life of its users, as evidenced by the focus of current research trends on creating inclusive conversational interfaces that cater to pathological speech, out of which dysarthric speech is an important example. Applications of speech technology research for dysarthric speech demand a clear understanding of the acoustics of dysarthric speech as well as of speech technologies, including machine learning and deep neural networks for speech processing.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) represents a significant public health challenge, with rates consistently on the rise. Enhancing kidney function prediction could contribute to the early detection, prevention, and management of CKD in clinical practice. We aimed to investigate whether deep learning techniques, especially those suitable for processing missing values, can improve the accuracy of predicting future renal function compared to traditional statistical method, using the Japan Chronic Kidney Disease Database (J-CKD-DB), a nationwide multicenter CKD registry.

View Article and Find Full Text PDF

Evaluating a clinically available artificial intelligence model for intracranial aneurysm detection: a multi-reader study and algorithmic audit.

Neuroradiology

January 2025

Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.

Purpose: We aimed to validate a clinically available artificial intelligence (AI) model to assist general radiologists in the detection of intracranial aneurysm (IA) in a multi-reader multi-case (MRMC) study, and to explore its performance in routine clinical settings.

Methods: Two distinct cohorts of head CT angiography (CTA) data were assembled to validate an AI model. Cohort 1, comprising gold-standard consecutive CTA cases, was used in an MRMC study involving six board-certified general radiologists.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!