AI Article Synopsis

  • The study focuses on how the sexual receptivity of female mice, measured by the lordosis response, is regulated by estrogen receptors, specifically ERα and ERβ, during different days of the estrous cycle.
  • It highlights the crucial role of ERα in activating lordosis on the day of estrus (Day 1) and investigates the role of ERβ in the dorsal raphe nucleus (DRN) during the nonreceptive state on Day 2.
  • Results indicate that activated DRN-ERβ neurons contribute to a decline in lordosis on Day 2, suggesting that these neurons inhibit receptivity when stimulated, providing insight into the hormonal regulation of sexual behaviors.

Article Abstract

The sexual receptivity of female mice, shown as lordosis response, is mainly regulated by estradiol action on estrogen receptor alpha (ERα) and beta (ERβ), depending on the day of the estrous cycle. Previous studies revealed that ERα in the ventromedial nucleus of the hypothalamus (VMH) plays an essential role in the induction of lordosis on the day of estrus (Day 1). However, the mechanisms of the transition to nonreceptive states on the day after estrus (Day 2) are not completely understood. In the present study, we investigated the possible role of ERβ, which is highly expressed in the dorsal raphe nucleus (DRN), in lordosis expression. We found that ERβ-Cre female mice, which were ovariectomized and primed with estradiol and progesterone to mimic the estrous cycle, showed high levels of lordosis on Day 2 when ERβ-expressing DRN (DRN-ERβ) neuronal activity was chemogenetically suppressed. This finding suggests that excitation of DRN-ERβ neurons is necessary for the decline of lordosis on Day 2. Fiber photometry recordings during female-male behavioral interactions revealed that DRN-ERβ neuronal activation in response to male intromission was significantly more prolonged on Day 2 compared with Day 1. Chemogenetic overstimulation of DRN-ERβ neurons induced c-Fos expression in brain areas known to be inhibitory for lordosis expression, even though they did not express anterogradely labeled fibers of DRN-ERβ cells. These findings collectively suggest that DRN-ERβ neuronal excitation serves as an inhibitory modulator and is responsible for the decline in receptivity during nonestrus phases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604141PMC
http://dx.doi.org/10.1523/JNEUROSCI.1137-24.2024DOI Listing

Publication Analysis

Top Keywords

female mice
12
lordosis day
12
drn-erβ neuronal
12
day
9
sexual receptivity
8
receptivity female
8
estrogen receptor
8
dorsal raphe
8
raphe nucleus
8
estrous cycle
8

Similar Publications

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

RSK4 promotes the metastasis of clear cell renal cell carcinoma by activating RUNX1-mediated angiogenesis.

Cancer Biol Ther

December 2025

State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi'an, China.

Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients.

View Article and Find Full Text PDF

Superior Anti-Tumor Response After Microbeam and Minibeam Radiation Therapy in a Lung Cancer Mouse Model.

Cancers (Basel)

January 2025

Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany.

Objectives: The present study aimed to compare the tumor growth delay between conventional radiotherapy (CRT) and the spatially fractionated modalities of microbeam radiation therapy (MRT) and minibeam radiation therapy (MBRT). In addition, we also determined the influence of beam width and the peak-to-valley dose ratio (PVDR) on tumor regrowth.

Methods: A549, a human non-small-cell lung cancer cell line, was implanted subcutaneously into the hind leg of female CD1 mice.

View Article and Find Full Text PDF

Circulating glycine levels have been associated with reduced risk of coronary artery disease (CAD) in humans but these associations have not been observed in all studies. We evaluated whether the relationship between glycine levels and atherosclerosis was causal using genetic analyses in humans and feeding studies in mice. Serum glycine levels were evaluated for association with risk of CAD in the UK Biobank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!