Regulatory studies have revolutionised over time. Today, the focus has shifted from animal toxicity testing to non-animal for regulatory safety testing. This move is in line with the international 3Rs (Replacement, Reduction, and Refinement) principle and has also changed the regulator's perspective. The 3R principle has stimulated changes in policy, regulations, and new approaches to safety assessment in drug development in many countries. The 3Rs approach has led to the discovery and application of new technologies and more human-relevant in vitro approaches that minimise the use of animals including non-human primates, in research and improve animal welfare. In 2016, the European Medicines Agency published the Guidelines on the principles of regulatory acceptance of 3Rs testing approaches, followed by a conceptual paper in 2023 to align with current 3R standards. Additionally, the United States Food and Drug Administration passed new legislation in 2023 that no longer requires all new human drugs to be tested on animals, which will change the current testing paradigm. This review paper provides the adoption of the 3Rs and the current regulatory perspective regarding their implementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yrtph.2024.105705 | DOI Listing |
Cancer Cytopathol
February 2025
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.
Background: Major mutations (e.g., KRAS, GNAS, TP53, SMAD4) in pancreatic cyst fluid (PCF) are useful for classifying and risk stratifying certain cyst types, particularly in cases with nondiagnostic cytology.
View Article and Find Full Text PDFHLA
January 2025
HLA and Histocompatibility Laboratory, CHRU de Nancy, Vandœuvre-lès-Nancy, France.
The novel allele HLA-DQA1*02:39 differs from HLA-DQA1*02:01:01:01 by one non-synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFHLA
January 2025
Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain.
Description of the novel HLA-DQA1*05:118 and -DQB1*03:01:01:73 alleles.
View Article and Find Full Text PDFThe novel HLA-C*03:678 allele differs from HLA-C*03:04:01:02 by single non-synonymous nucleotide substitution.
View Article and Find Full Text PDFEur J Sport Sci
February 2025
Department of Sport and Health Sciences and Social Work, Oxford Brookes University, Oxford, UK.
Some technical limitations to using the eccentric mode to measure peak eccentric strength of the hamstrings (PTH) were raised. PTH also has limited validity to predict performance or injury risk factor. Therefore, our aim was to compare PTH and other isokinetic variables tested in the eccentric and passive modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!