Bipolar disorder is a mood-related disorder, which can be portrayed as extreme shifts in energy, mood, and activity levels which can also be characterized by manic highs and depressive lows that can be often misdiagnosed as unipolar disorder due to primitive diagnostics techniques based on clinical assessments as well as diagnostic complexities arising due to its heterogeneous nature and overlapping symptoms with conditions like schizophrenia. leading to delays in treatment Strong evidence in support of genetic and epigenetic aspects of bipolar disorder, including mechanisms such as compromised hypothalamic-pituitary-adrenal axis, immune-inflammatory imbalances, oxidative stress, and mitochondrial dysfunction are found. Moreover, some previous research has already stated the role of genes like CITED2, NUDT4, and Arl8B in these processes. The primary goal of this study is to investigate the involvement of the genes in exploring and validating their potential as biomarkers for bipolar disorder. In silico tools like MutationTaster, PolyPhen2, SIFT, GTEx, PhenoScanner, and RegulomeDB were used to perform mutational and gene expression analyses. Results revealed potentially dangerous mutations caused in CITED2, NUDT4, and Arl8B, those which can have diverse outcomes. RegulomeDB, GTEx, and PhenoScanner reveal the involvement of these genes in various brain regions highlighting their relevance to bipolar disorder. This analysis suggests the potential utility of CITED2, NUDT4, and Arl8B as diagnostic markers hence shedding light on their roles to elaborate the molecular range of bipolar disorder. The study also contributes to providing valuable insights into the genetic and molecular basis of bipolar disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2024.115257 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!