Biochar modification is an effective approach to enhance its ability to promote anaerobic digestion (AD). Focusing on the physical properties of biochar, the impact of different particle sizes of biochar on AD of food waste (FW) at high organic loading rate (OLR) was investigated. Four biochar with different sizes (40-200 mesh) were prepared and used in AD systems at OLR 30 g VS/L. The research results found that biochar with a volume particle size of 102 μm (RBC-P140) had top-performance in promoting cumulative methane production, increasing by 13.20% compared to the control group. The analysis results of the variety in volatile acids and alkalinity in the system did not show a correlation with the size of biochar, but small size has the potential to improve the environmental tolerance of the system to high acidity. Microbial community analysis showed that the abundance of aceticlastic methanogen and the composition of zoogloea were optimized through relatively small-sized biochar. Through revealing the effect of biochar particle size on AD system at high OLR, this work provided theoretical guidance for regulating fermentation systems using biochar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143358 | DOI Listing |
Environ Geochem Health
January 2025
Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species 2024SSY04093, College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
A convenient method is proposed using a heat-treatable volatile template to prepare hierarchical porous biochar (HPB). Litsea cubeba leaves and ZIF-8 served as carbon source and volatile hard template, respectively. The good compatibility between ZIF-8 and biomass facilitated their uniform dispersion, and the thermal decomposition of ZIF-8 created abundant pores in the HPB.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, A1B 3X7, Canada.
The challenge with synthetically modified biochars is that they are notoriously difficult to characterize, and a new characterization approach that circumvents the challenges posed by overlapping bands in IR spectra is needed. We report multinuclear NMR approaches successful in the easy identification and quantification of covalently-bound functional groups on the biochar surface using P{H} CPMAS NMR spectroscopy.
View Article and Find Full Text PDFBioresour Technol
January 2025
College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China. Electronic address:
Enhancing the passivation of heavy metals and increasing organic matter content during the composting of sewage sludge poses significant challenges for maximizing its utilization value. Results indicated that in the control, biochar, microbial agents and microbial agents-loaded biochar (BCLMA) groups, BCLMA addition led to a higher composting temperature, with increases of 17-62% in humic acid, 25-73% in germination index, and 30-35% in organic matter consumption. And the residual fraction of Cu, Zn, Cr and Cd were increased by 30%, 12%, 22%, and 17%, respectively.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China. Electronic address:
Enhanced microbial remediation represents a promising technique for the removal of polycyclic aromatic hydrocarbons (PAHs). However, high-efficiency remediation agents remain limited, including microbial resources and remediation materials. In this study, a novel strain of Pseudomonas xizangensis S4 was isolated from plateau lake sediment, exhibiting a fluoranthene degradation rate of 41.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!