Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study presents a novel approach to sustainable aquaculture by integrating biofloc technology (BFT) with a compact down-flow hanging sponge (DHS) reactor. The integrated BFT-DHS system effectively removed nitrogen compounds while maintaining ammonia-nitrogen (NH-N) concentrations below 1 mg-N L without water exchange. Application of this system in a tank bred with juvenile Oreochromis niloticus showed a high NH-N removal rate of up to 97 % and nitrite (NO -N) concentrations were maintained at 0.1 ± 0.1 mg-N L. Microbial analysis revealed Gordonia as the predominant genus in the biofloc contributing to heterotrophic nitrification, while the Peptostreptococcaceae family dominated the DHS reactor. Heterotrophic nitrification seemed to be the primary process for enhanced nitrogen removal. Pathogenic bacteria, Vibrio sp. was absent throughout the study. This study highlights the potential integration of BFT and DHS system for sustainable aquaculture practice with effective nitrogen removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131496 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!