The use of bio-based composites to enhance the methane production in anaerobic digestion has attracted considerable attention. Nevertheless, the study of electron transfer mechanisms and the applications of biochar/MnO (MBC) in complex systems remains largely unexplored. Biochar composited with MnO at 10:1 mass ratio (MBC10) increased the content of volatile fatty acids by 9.09 % during acidogenic phase. During the methanogenic experiments using acetate, cumulative methane production (CMP) rose by 5.83 %, and in the methanogenic experiments using food waste, CMP increased by 24.32 %. Microbial community analysis indicated an enrichment of Syntrophomonas, Bacilli, and Methanosaetaceae in the MBC10 group. This enrichment occurred mainly due to the redox capability of MnO enhancing MBC capacitance, thereby facilitating microbial electron transfer processes. Additionally, under 2 g/L ammonia nitrogen concentration and 30 g/L organic load, the CMP of MBC10 increased by 12.74 % and 9.44 %, respectively, compared to the BC600 group. This study illuminates MBC's electron transfer mechanisms and applications, facilitating its wider practical adoption and fostering future innovations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176303 | DOI Listing |
Nanomicro Lett
January 2025
Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Jinju, Gyeongnam, 52851, Republic of Korea.
All-solid-state batteries (ASSBs) are pursued due to their potential for better safety and high energy density. However, the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials (AMs) at high loading. With small amount of solid electrolyte (SE) powder in the cathode, poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs, leading to high tortuosity and limitation of lithium and electron transport pathways.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Environmental Microbiology Group, Institute of Water Research, University of Granada, 18003, Granada, Spain.
Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
College of Physics, Liaoning University, Shenyang 110036, China.
Based on the DCV-C system of fullerene acceptor organic solar cell active materials, the charge transfer process of D-A type molecular materials under the action of an external electric field () was explored. Within the range of electric field application, the excited state characteristics exhibit certain regular changes. Based on reducing the excitation energy, the excitation mode shows a trend of developing toward low excited states.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
A BCA -coordinated MOF (1) was initially discovered to exhibit electron transfer photochromism. Remarkably, the photogenerated radicals (1P) showed a maximum absorption enhancement peak at 1158 nm, resulting from the synergistic effects of planar π-conjugation induced by -coordination and π-π interactions among [BCA]˙˙ radicals, thereby promoting the NIR-II photothermal effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!