Mapping the heterogeneous removal landscape of wastewater virome in effluents of different advanced wastewater treatment systems of swine farm.

Water Res

Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China. Electronic address:

Published: November 2024

AI Article Synopsis

  • * A meta-transcriptomics approach was used to assess virus composition and removal efficiency in two treatment systems, revealing a total of 172 viruses, with the chemical oxidation method (TCO) shown to reduce viral abundance, especially among RNA viruses.
  • * Despite increased efficiency in reducing viral numbers, pathogenic viruses such as PEDV and PRRSV remained present in the effluent, with environmental factors like pond temperature identified as significant influences on viral community variations.

Article Abstract

In advanced wastewater treatment plants on pig farms, meticulous design aims to eliminate intrinsic pollutants such as organic matter, heavy metals, and biological contaminants. In our field survey across Southern China, a notable disparity in wastewater treatment procedures among various farming facilities lies in the utilization of terminal chemical oxidation post-sedimentation tank. However, recent focus in wastewater surveillance has predominantly centered on antibiotic resistance genes, leaving the efficacy of virus removal in different effluent systems largely unexplored. To profile virus composition at the effluent, assess the virus elimination efficiency of chemical oxidation at the effluent end, and the potential environmental driver of virus abundance, we deployed a meta-transcriptomics approach to first determine the total virome in effluent specimens of terminal clean water tank system (CWT) and terminal chemical oxidation system (TCO) in Southern China pig farms, respectively. From these data, 172 viruses were identified, with a median reads per million (RPM) of 27,789 in CWT and 19,982 in TCO. Through the integration of analyses encompassing the co-occurrence patterns within viral communities, the ecology of viral diversity, and a comparative assessment of average variation degrees, we have empirically demonstrated that the procedure of TCO may perturb viral communities and diminish their abundance, particularly impacting RNA viral communities. However, despite the diminished abundance, pathogenic viruses such as PEDV and PRRSV persisted in the effluent following chemical deoxidation at a moderate RPM value, indicating a substantial in situ presence at effluent. Our environmental driver modeling, employing GLM and mantel tests, substantiated the intricate nature of virus community variation within the effluent, influenced heterogeneously by diverse factors. Notably, pond temperature emerged as the foremost determinant, while fishing farming exhibited a positive correlation with virus diversity (p < 0.05). This revelation of the cryptic persistence of virus communities in wastewater effluent expands our understanding of the varied responses of different virus categories to oxidation. Such insights transcend mere virus characterization, offering valuable implications for enhancing biosafety measures in farming practices and informing wastewater-based epidemiological surveillance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122446DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
chemical oxidation
12
viral communities
12
virus
9
advanced wastewater
8
pig farms
8
southern china
8
terminal chemical
8
effluent
8
environmental driver
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!