Evaporation has been one of the most classic desalination processes on the Earth. When we try to use the power of water flow itself, the evaporation process can perform even better. Here, we report a hydrodynamic solar-driven interfacial evaporation process which water evaporation rate can achieve 6.58 kg·m·h (over 100 times higher than natural evaporation). A waterwheel-structure solar interfacial evaporator was designed and assembled by printed filter papers. The evaporator can both rapidly distribute solution on the evaporation interface and be hydraulically driven to rotate continuously to improve the evaporation rate by water flow. The hydrodynamic solar-driven interfacial evaporation process successfully overcomes the problem of slow diffusion of water vapor, but also realizes the day-and-night operation of process and the self-cleaning of salt fouling. Apart from the application in solar desalination, the developed evaporator has great potentials in vapor production and salt recovery for industrial use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122432 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!