Persistent free radicals in natural organic matter activated by iron particles enhanced disinfection byproduct formation.

Water Res

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: November 2024

The widespread presence of iron (Fe) particles and natural organic matter (NOM) in drinking water distribution systems (DWDS) can significantly affect tap water quality, contributing to aesthetic issues and potentially generating harmful disinfection byproducts (DBPs). This study revealed that Fe particles, when combined with humic acid (HA), substantially increased DBP formation during chlorination. Fe particles (particularly preformed Fe particles) significantly increased haloacetic acid (HAA) formation by activating the persistent free radicals (PFRs) in the HA. Compared with the control system without Fe particles, greater than 2 times of HAA increase were observed for the system with Fe pariticles. PFRs accumulated on Fe particle surface could generate hydroxyl radicals, facilitating the decomposition of HA into smaller molecules, which were more reactive with chlorine disinfectants, thus elevated the DBP formation including both known and unknown N-DBPs and Cl-DBPs. The DBP promotion effect of in-situ formed Fe particles was much less than that of preformed Fe particles although both in-situ formed and preformed Fe particles could accumulate PFRs from HA. In-situ formed particles primarily accumulated carbon-centered PFRs, while preformed particles accumulated oxygen-centered PFRs. To mitigate the Fe particle induced water quality risks, it is crucial to control iron pipe corrosion and iron release in DWDS. In addtion, the optimization of treatment processes such as coagulation and filtration to more completely remove NOM and Fe particles could help minimize the DBP formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122387DOI Listing

Publication Analysis

Top Keywords

preformed particles
16
particles
12
dbp formation
12
in-situ formed
12
persistent free
8
free radicals
8
natural organic
8
organic matter
8
iron particles
8
water quality
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!