Simulation of murine retinal hemodynamics in response to tail suspension.

Comput Biol Med

Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia. Electronic address:

Published: November 2024

AI Article Synopsis

  • - Researchers are investigating the causes of spaceflight-associated neuro-ocular syndrome (SANS) and found that simulated microgravity (tail suspension in mice) might affect retinal blood vessels, potentially causing dysfunction.
  • - Using advanced imaging and computational techniques, the study examined the eye samples, revealing that tail-suspended mice had shorter and fewer small blood vessels with increased wall shear stress and pressure compared to control mice.
  • - The results suggest a potential connection between space-like environments and changes in retinal health, which could be relevant for understanding SANS, highlighting the need for further research with larger sample sizes.

Article Abstract

The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained and imaged for the vessel plexus and co-located regions of endothelial cell death. A custom workflow combined whole-mounted and tear reconstructed three-dimensional (3D) spherical retinal plexus models with computational fluid dynamics (CFD) simulation that accounted for the Fåhræus-Lindqvist effect and boundary conditions that accommodated TS fluid pressure measurements and deeper capillary layer blood flow distribution. TS samples exhibited reduced surface area (4.6 ± 0.5 mm vs. 3.5 ± 0.3 mm, P = 0.010) and shorter lengths between branches in small vessels (<10 μm, 69.5 ± 0.6 μm vs. 60.4 ± 1.1 μm, P < 0.001). Wall shear stress (WSS) and pressure were higher in TS mice compared to controls, particularly in smaller vessels (<10 μm, WSS: 6.57 ± 1.08 Pa vs. 4.72 ± 0.67 Pa, P = 0.034, Pressure: 72.04 ± 3.14 mmHg vs. 50.64 ± 6.74 mmHg, P = 0.004). Rates of retinal endothelial cell death were variable in TS mice compared to controls. WSS and pressure were generally higher in cell death regions, both within and between cohorts, but significance was variable and limited to small to medium-sized vessels (<20 μm). These findings suggest a link may exist between emulated microgravity and retinal endothelial dysfunction that may have implications for SANS development. Future work with increased sample sizes of larger species or spaceflight cohorts should be considered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.109148DOI Listing

Publication Analysis

Top Keywords

simulation murine
4
murine retinal
4
retinal hemodynamics
4
hemodynamics response
4
response tail
4
tail suspension
4
suspension etiology
4
etiology spaceflight-associated
4
spaceflight-associated neuro-ocular
4
neuro-ocular syndrome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!