The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.113146 | DOI Listing |
J Physiol Sci
January 2025
Department of Neurology, Keio University School of Medicine, Tokyo, Japan.
The joint workshop between U.S. and Japanese researchers, supported by The U.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy.
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed.
View Article and Find Full Text PDFBrain Spine
December 2024
Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, FI-20521, Turku, Finland.
Introduction: Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is recognized as a diagnostic and prognostic blood biomarker for traumatic brain injury (TBI). This study aimed to evaluate whether UCH-L1 concentrations measured in patients' urine post-injury could serve as a diagnostic or prognostic biomarker for outcomes in various types of acute brain injuries (ABI).
Material And Methods: This pilot study included 46 ABI patients: aneurysmal subarachnoid hemorrhage (n = 22), ischemic stroke (n = 16), and traumatic brain injury (n = 8), along with three healthy controls.
Neurol Clin Pract
April 2025
Department of Health Care Policy, Harvard Medical School, Boston, MA.
Background And Objectives: Early presentation and acute treatment for patients presenting with ischemic stroke are associated with improved outcomes. The onset of the COVID-19 pandemic was associated with a large decrease in patients presenting with ischemic stroke, but it is unknown whether these changes persisted.
Methods: This study analyzed emergency department (ED) stroke presentations (n = 158,060) to all nonfederal hospitals in the 50 states and Washington, D.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!