This study is the first successful application of a nanomaterial-supported molecularly imprinted polymer (MIP)-based electrochemical sensor for the sensitive and selective determination of apigenin (API), which is a naturally occurring product of the flavone class that is an aglycone of several glycosides. Secondary metabolites are biologically active substances produced by plants in response to various environmental factors. The levels of these compounds can vary depending on factors such as climate, soil conditions and the season in which the plants are grown. Therefore, the analysis of these compounds is essential to properly understand the biological effects of plant extracts and to ensure their safe use. To increase the glassy carbon electrode (GCE) surface's active surface area and porosity, zinc oxide nanoparticles (ZnO NPs) were integrated into the MIP-based electrochemical sensor design. Tryptophan methacrylate (TrpMA) was selected as the functional monomer along with other MIP components such as 2-hydroxyethyl methacrylate (HEMA, basic monomer), 2-hydroxy-2-methylpropiophenone (initiator), and ethylene glycol dimethacrylate (EGDMA, crosslinking agent). The morphological and electrochemical characterizations of the developed API/ZnO NPs/TrpMA@MIP-GCE sensor were performed with scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The indirect measurement approach via 5.0 mM [Fe(CN)] solution was utilized to determine API in the linear range of 1.0x10 M - 1.0x10 M. The limit of detection (LOD) and limit of quantification (LOQ) for standard solutions were found to be 2.47x10 and 8.23x10 M, respectively. In addition, the extraction processes were carried out using ultrasound-assisted extraction (UAE) and maceration (MCR) procedures. For Apium graveolens L., Petroselinum crispum (Mill.) Fuss and herbal supplement, the API recoveries varied from 98.79 % to 102.71 %, with average relative standard deviations (RSD) less than 2.25 % in all three cases. The sensor's successful performance in the presence of components with chemical structures similar to the API was also demonstrated, revealing its unique selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126895 | DOI Listing |
Bioessays
January 2025
Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China.
Bacteria have a significant impact on human production and life, endangering human life and health, so rapid detection of infectious agents is essential to improve human health. Aptamers, which are pieces of oligonucleotides (DNA or RNA) have been applied to biosensors for bacteria detection due to their high affinity, selectivity, robust chemical stability, and their compatibility with various signal amplification and signal transduction mechanisms. In this review, we summarize the different bacterial aptamers selected in recent years using SELEX technology and discuss the differences in optical and electrochemical bacterial aptamer sensors.
View Article and Find Full Text PDFNanoscale
January 2025
CSIR - Central Institute of Mining and Fuel Research (CIMFR), Digwadih Campus, Dhanbad - 828108, Jharkhand, India.
Alkali metal doping is a new and promising approach to enhance the photo/electrocatalytic activity of NiS-based catalyst systems. This work investigates the impact of sodium on the structural, electronic, and catalytic properties of NiS. Comprehensive characterization techniques demonstrate that Na-doping causes significant changes in the NiS lattice and surface chemistry translating into a larger bandgap than NiS.
View Article and Find Full Text PDFTalanta
January 2025
Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia. Electronic address:
Ampicillin (AMP) ranks third among the top ten most frequently sold antibiotic combinations globally, raising concerns due to its extensive use. Improper disposal practices in agriculture, aquaculture, and healthcare have led to environmental contamination of water sources with elevated AMP levels. Current methods for detecting such contamination are costly, require sophisticated equipment, and depend on skilled personnel and unstable natural receptors.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University 071002 Baoding, PR China. Electronic address:
In this study, a Co doped polyhedral carbon skeleton (Co CN) was prepared by nitrogen carbonization using ZIF-67 as a precursor. The Co CN features a rough surface with excellent electrical conductivity, and the Co atoms exhibit unique catalytic properties. Based on these characteristics, we used Co CN as a carrier to load Au nanoparticles (NPs) onto its surface through the linkage and reduction effects of polyoxometalates (POMs).
View Article and Find Full Text PDFACS Nano
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States.
Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!