Hot and cold Earth through time.

Science

School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.

Published: September 2024

Reconstructing ancient Earth's temperature reveals a global climate regulation system.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.ads1526DOI Listing

Publication Analysis

Top Keywords

hot cold
4
cold earth
4
earth time
4
time reconstructing
4
reconstructing ancient
4
ancient earth's
4
earth's temperature
4
temperature reveals
4
reveals global
4
global climate
4

Similar Publications

The article examines the territory of East Kazakhstan, where a sharply continental climate prevails with hot summers, cold and snowy winters. The mountainous regions of East Kazakhstan are represented by the Kalba, Altai and Saur-Tarbagatay ranges, they are surrounded by rolling plains. The highest points are at 3000-4500 m.

View Article and Find Full Text PDF

Adaptive Phase Change Microcapsules for Efficient Sustainable Cooling.

ACS Appl Mater Interfaces

January 2025

School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.

View Article and Find Full Text PDF

Facile integration of a binary nano-prodrug with αPD-L1 as a translatable technology for potent immunotherapy of TNBC.

Acta Biomater

January 2025

Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China. Electronic address:

Immune checkpoint blockers (ICBs)-based immunotherapy is a favorable approach for efficient triple-negative breast cancer (TNBC) treatment. However, the therapeutic efficacy of ICBs is greatly compromised by immunosuppressive tumor microenvironments (TMEs) and low expression levels of programmed cell death ligand-1 (PD-L1). Herein, we constructed an amphiphilic prodrug by linking a hydrophobic STING agonist, MSA-2 and a hydrophilic chemotherapeutic drug, gemcitabine (GEM) via an ester bond, which can self-assemble into GEM-MSA-2 (G-M) nanoparticles (NPs) with a tumor growth inhibition (TGI) value of 87.

View Article and Find Full Text PDF

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!