Fog collection is a promising solution for mitigating the urgent water shortage around the world. Despite the delicate design of various bionic fog harvesting surfaces with prowess to enable fast fog capture and programmed water transport, achieving sustainable and efficient fog collection by regulating the macroscale surface refreshment efficacy remains rarely concerned yet is effective. Here, we proposed a bioinspired structural design to achieve significant improvement on the surface refreshment efficacy to 46.47%, nearly 5 times larger than that of conventional design. Specifically, we constructed superhydrophilic vein-like microchannels on a superhydrophobic brass surface by using laser texture technology and hydrothermal treatment. Our microchannel design acts as a "highway" for synergically transporting and converging the collected fog droplets, as well as rapidly refreshing large surface area for the subsequent fog collection, reminiscent of the leaf veins responsible for the persistent mass transport between plant tissues. The practical implementation also convinced our design of a maximum water collection efficiency of up to 506.67 mg cm h and a long-term performance stability within a 10 h test. Our design is generic to most of the fog harvesting materials, showing great application potential for efficient atmospheric fog collection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c11883 | DOI Listing |
J Environ Manage
January 2025
Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Inspired by the adhesion differences on the surfaces of fresh and dried rose petals, a rose bionic self-cleaning fog collector (RBSC) was designed and prepared to realize a self-driven fog harvesting function. The droplet detachment iteration rate was revealed by the regulating mechanism of the surface adhesion force of the RBSC and the influence of bionic texture parameters, as demonstrated through the fog harvesting experiment and droplet detachment failure analysis. Through the surface adhesion force regulation, the probability of droplet dissipation with the airflow is reduced by increasing the falling droplets' mass, and the single surface fog capture efficiency is up to 740 mg cm h.
View Article and Find Full Text PDFSmall
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China.
Innovative design strategies of fog harvesting devices (FHDs) demonstrate promising remedy for water crisis in arid areas. 1D FHDs ensure unimpeded wind circulation and can be manufactured more cost-effectively for extensive regions. Inspired by cactus thorns, desert beetles, and spider silk, two metal organic frameworks (MOFs) functionalized Cu wires with opposite wettability are double-twisted by a mechanical twisting machine, forming 1D double-spiral Cu wires with alternating superhydrophobic/superhydrophilic dual-MOF patterns.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
Freezing of gait (FOG) is a debilitating symptom of Parkinson disease (PD). It is episodic and variable in nature, making assessment difficult. Wearable sensors used in conjunction with specialized algorithms, such as our group's pFOG algorithm, provide objective data to better understand this phenomenon.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Obstetrics and Gynecology, University Medicine Greifswald, Sauerbruchstr., Greifswald, 17475, Germany.
Background: The diagnosis of rare uterine leiomyosarcoma (uLMS) remains a challenge given the high incidence rates of benign uterine tumors such as leiomyoma (LM). In the last decade, several clinical scores and blood serum markers have been proposed. The aim of this study is to validate and update the pLMS clinical scoring system, evaluating the accuracy of the scoring system by Zhang et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!