A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distribution of MRI-derived T2 values as a biomarker for in vivo rapid screening of phenotype severity in mdx mice. | LitMetric

Background: The pathology in Duchenne muscular dystrophy (DMD) is characterized by degenerating muscle fibers, inflammation, fibro-fatty infiltrate, and edema, and these pathological processes replace normal healthy muscle tissue. The mdx mouse model is one of the most commonly used preclinical models to study DMD. Mounting evidence has emerged illustrating that muscle disease progression varies considerably in mdx mice, with inter-animal differences as well as intra-muscular differences in pathology in individual mdx mice. This variation is important to consider when conducting assessments of drug efficacy and in longitudinal studies. We developed a magnetic resonance imaging (MRI) segmentation and analysis pipeline to rapidly and non-invasively measure the severity of muscle disease in mdx mice.

Methods: Wildtype and mdx mice were imaged with MRI and T2 maps were obtained axially across the hindlimbs. A neural network was trained to rapidly and semi-automatically segment the muscle tissue, and the distribution of resulting T2 values was analyzed. Interdecile range and Pearson Skew were identified as biomarkers to quickly and accurately estimate muscle disease severity in mice.

Results: The semiautomated segmentation tool reduced image processing time approximately tenfold. Measures of Pearson skew and interdecile range based on that segmentation were repeatable and reflected muscle disease severity in healthy wildtype and diseased mdx mice based on both qualitative observation of images and correlation with Evans blue dye uptake.

Conclusion: Use of this rapid, non-invasive, semi-automated MR image segmentation and analysis pipeline has the potential to transform preclinical studies, allowing for pre-screening of dystrophic mice prior to study enrollment to ensure more uniform muscle disease pathology across treatment groups, improving study outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412503PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310551PLOS

Publication Analysis

Top Keywords

mdx mice
20
muscle disease
20
muscle
8
muscle tissue
8
segmentation analysis
8
analysis pipeline
8
interdecile range
8
pearson skew
8
disease severity
8
mdx
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!